Бакалавриат
2022/2023
Математический анализ (углубленный курс)
Статус:
Курс по выбору (Прикладная математика и информатика)
Направление:
01.03.02. Прикладная математика и информатика
Где читается:
Факультет компьютерных наук
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Красовицкий Тихон Ильич,
Лимонченко Иван Юрьевич,
Лобода Артем Александрович,
Оноприенко Анастасия Александровна
Язык:
русский
Кредиты:
10
Контактные часы:
176
Программа дисциплины
Аннотация
Математический анализ 1 является одним из фундаментальных курсов, формирующих освоение студентами аппарата дифференциального и интегрального исчисления. Курс состоит из четырех основных тем: предел, непрерывность, дифференцирование и интегрирование функций. Студенты узнают методы вычисления пределов последовательностей и функций, овладевают техникой дифференцирования и интегрирования. Изучается формула Тейлора и методы аппроксимации элементарных функций. На основе указанных методов приобретаются навыки исследования функций на экстремум, их асимптотического анализа и построения графиков. В рамках указанного курса приобретаются как практические навыки применения методов математического анализа, так и осваиваются теоретические понятия и методы доказательства теорем, играющие важную роль в общей математической культуре студентов. Рассматриваемые понятия и методы составляют основу большинства разделов высшей математики. На базе этого курса происходит дальнейшее изучение таких дисциплин как дифференциальные уравнения, вычислительные методы, теория вероятностей, машинное обучение, компьютерное зрение и других.
Цель освоения дисциплины
- ознакомление студентов с теоретическими основами таких разделов математического анализа как теория пределов, непрерывность. дифференцируемость и интегрируемость функций
- формирование практических навыков вычисления пределов последовательностей и функций, овладения техникой дифференцирования и интегрирования, исследования функции на экстремум
Планируемые результаты обучения
- владеть техникой вычисления пределов последовательностей и функций
- владеть техникой дифференцирования
- владеть техникой интегрирования
- владеть техникой качественного анализа функции и построения ее графика
- знать определения основных понятий дифференциального и интегрального исчисления
- знать формулировки и доказательства основных теорем и лемм курса
- уметь исследовать функцию на экстремум
Содержание учебной дисциплины
- Теория пределов и непрерывность функции одной переменной.
- Дифференциальное исчисление функций одной переменной.
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций многих переменных.
Элементы контроля
- Домашнее заданиеЗадачи аналогичны тем, которые решаются на семинаре, однако встречаются и такие, которые развивают тему, пройденную на семинаре. Наиболее сложные помечены звёздочками, но за них оценка ставится отдельно.
- Коллоквиум4 вопроса на формулировки, два вопроса на доказательства и одна задача. Возможны дополнительные вопросы по курсу, если в ответах студента имеются недочёты.
- Проверочные работы на семинарахОдна или две простые задачи по лекционному курсу или семинарским занятиям
- Контрольная работаКонтрольная состоит из шести или семи задач. Одна задача повышенной сложности, остальные соответствуют темам семинарских занятий и похожи по типу на те, что обсуждались на семинарах. При этом, конечно, необходимо иногда применить комбинацию из нескольких подходов, обсуждавшихся на семинарах, где-то требуется нестандартный подход, однако никаких дополнительных знаний, кроме тех, что получены в ходе изучения соответствующих тем, не требуется.
- Задачи со звёздочкамиОдна – две задачи, в каждой из которых требуется несколько шагов для решения, решение которых полезно проводить, изучая дополнительный материал и разбираясь в нём.
- ЭкзаменПроводится письменно, состоит из 6 или 7 задач по темам, которые пройдены на лекциях и семинарах. Всё, что касается сложности задач, аналогично тому, что написано о контрольной работе.
Промежуточная аттестация
- 2022/2023 учебный год 2 модуль0.2 * Коллоквиум + 0.05 * Проверочные работы на семинарах + 0.2 * Контрольная работа + 0.4 * Домашнее задание + 0.15 * Задачи со звёздочками
- 2022/2023 учебный год 4 модуль0.2 * Коллоквиум + 0.05 * Проверочные работы на семинарах + 0.15 * Задачи со звёздочками + 0.2 * Экзамен + 0.2 * Домашнее задание + 0.2 * Контрольная работа
Список литературы
Рекомендуемая основная литература
- Курс дифференциального и интегрального исчисления. Т.1: ., Фихтенгольц, Г. М., 2001
- Курс дифференциального и интегрального исчисления. Т.2: ., Фихтенгольц, Г. М., 2001
- Курс дифференциального и интегрального исчисления. Т.3: ., Фихтенгольц, Г. М., 2002
- Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров, А. М., 2000
- Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович, Б. П., 2004
Рекомендуемая дополнительная литература
- Математический анализ. Т. 1: ., Зорич, В. А., 2015
- Математический анализ. Т. 2: ., Зорич, В. А., 2015