• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2022/2023

Математический анализ (углубленный курс)

Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 1-й курс, 1-4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 10
Контактные часы: 176

Программа дисциплины

Аннотация

Математический анализ 1 является одним из фундаментальных курсов, формирующих освоение студентами аппарата дифференциального и интегрального исчисления. Курс состоит из четырех основных тем: предел, непрерывность, дифференцирование и интегрирование функций. Студенты узнают методы вычисления пределов последовательностей и функций, овладевают техникой дифференцирования и интегрирования. Изучается формула Тейлора и методы аппроксимации элементарных функций. На основе указанных методов приобретаются навыки исследования функций на экстремум, их асимптотического анализа и построения графиков. В рамках указанного курса приобретаются как практические навыки применения методов математического анализа, так и осваиваются теоретические понятия и методы доказательства теорем, играющие важную роль в общей математической культуре студентов. Рассматриваемые понятия и методы составляют основу большинства разделов высшей математики. На базе этого курса происходит дальнейшее изучение таких дисциплин как дифференциальные уравнения, вычислительные методы, теория вероятностей, машинное обучение, компьютерное зрение и других.
Цель освоения дисциплины

Цель освоения дисциплины

  • ознакомление студентов с теоретическими основами таких разделов математического анализа как теория пределов, непрерывность. дифференцируемость и интегрируемость функций
  • формирование практических навыков вычисления пределов последовательностей и функций, овладения техникой дифференцирования и интегрирования, исследования функции на экстремум
Планируемые результаты обучения

Планируемые результаты обучения

  • владеть техникой вычисления пределов последовательностей и функций
  • владеть техникой дифференцирования
  • владеть техникой интегрирования
  • владеть техникой качественного анализа функции и построения ее графика
  • знать определения основных понятий дифференциального и интегрального исчисления
  • знать формулировки и доказательства основных теорем и лемм курса
  • уметь исследовать функцию на экстремум
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Теория пределов и непрерывность функции одной переменной.
  • Дифференциальное исчисление функций одной переменной.
  • Интегральное исчисление функций одной переменной
  • Дифференциальное исчисление функций многих переменных.
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
    Задачи аналогичны тем, которые решаются на семинаре, однако встречаются и такие, которые развивают тему, пройденную на семинаре. Наиболее сложные помечены звёздочками, но за них оценка ставится отдельно.
  • неблокирующий Коллоквиум
    4 вопроса на формулировки, два вопроса на доказательства и одна задача. Возможны дополнительные вопросы по курсу, если в ответах студента имеются недочёты.
  • неблокирующий Проверочные работы на семинарах
    Одна или две простые задачи по лекционному курсу или семинарским занятиям
  • неблокирующий Контрольная работа
    Контрольная состоит из шести или семи задач. Одна задача повышенной сложности, остальные соответствуют темам семинарских занятий и похожи по типу на те, что обсуждались на семинарах. При этом, конечно, необходимо иногда применить комбинацию из нескольких подходов, обсуждавшихся на семинарах, где-то требуется нестандартный подход, однако никаких дополнительных знаний, кроме тех, что получены в ходе изучения соответствующих тем, не требуется.
  • неблокирующий Задачи со звёздочками
    Одна – две задачи, в каждой из которых требуется несколько шагов для решения, решение которых полезно проводить, изучая дополнительный материал и разбираясь в нём.
  • неблокирующий Экзамен
    Проводится письменно, состоит из 6 или 7 задач по темам, которые пройдены на лекциях и семинарах. Всё, что касается сложности задач, аналогично тому, что написано о контрольной работе.
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.2 * Коллоквиум + 0.05 * Проверочные работы на семинарах + 0.2 * Контрольная работа + 0.4 * Домашнее задание + 0.15 * Задачи со звёздочками
  • 2022/2023 учебный год 4 модуль
    0.2 * Коллоквиум + 0.05 * Проверочные работы на семинарах + 0.15 * Задачи со звёздочками + 0.2 * Экзамен + 0.2 * Домашнее задание + 0.2 * Контрольная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Курс дифференциального и интегрального исчисления. Т.1: ., Фихтенгольц, Г. М., 2001
  • Курс дифференциального и интегрального исчисления. Т.2: ., Фихтенгольц, Г. М., 2001
  • Курс дифференциального и интегрального исчисления. Т.3: ., Фихтенгольц, Г. М., 2002
  • Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров, А. М., 2000
  • Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович, Б. П., 2004

Рекомендуемая дополнительная литература

  • Математический анализ. Т. 1: ., Зорич, В. А., 2015
  • Математический анализ. Т. 2: ., Зорич, В. А., 2015

Авторы

  • Делицын Андрей Леонидович
  • Косов Егор Дмитриевич
  • Оруджева Альбина Александровна
  • Айзенберг Антон Андреевич
  • Шаповал Александр Борисович