• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Как победить в соревновании по анализу данных: учимся у лучших на платформе Kaggle

Статус: Маго-лего
Когда читается: 2 модуль
Онлайн-часы: 20
Охват аудитории: для всех кампусов НИУ ВШЭ
Преподаватели: Миленькин Александр Анатольевич
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

The study of this discipline is based on the following courses: • Machine learning • Data analysis methods To master the discipline, students must possess the following knowledge and competencies: • Programming method • Linear algebra Probability and statistics The main provisions of the discipline can be used in their professional activities. https://www.coursera.org/learn/competitive-data-science
Цель освоения дисциплины

Цель освоения дисциплины

  • The purpose of the discipline is to get acquainted with modern methods of data analysis and ma-chine learning and their use in data analysis competitions
Планируемые результаты обучения

Планируемые результаты обучения

  • Be able to choose the method of data processing and perform the data processing by the selected method
  • Be able to choose the method of cross validation and evaluate the quality of the selected method of data processing
  • Be able to solve the problems of data analysis competitions.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Data processing
  • Methodology of cross validation
  • Completions in data analysis
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
  • неблокирующий Соревнование на Kaggle
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.4 * Соревнование на Kaggle + 0.6 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)

Рекомендуемая дополнительная литература

  • Witten, I. H. et al. Data Mining: Practical machine learning tools and techniques. – Morgan Kaufmann, 2017. – 654 pp.

Авторы

  • Миленькин Александр Анатольевич