• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Эргодичность и перемешивание для марковских процессов

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

Last decades witness fast penetrating of Probability to other fields of mathematics, first of all - to differential equations, PDEs and mathematical physics. Probability starts to enter geometry, and has rich and involved relation with the algebraic number theory. The goal of this course is to present sections of Probability, motivated by differential equations, PDEs and mathematical physics in order to justify physical thesis that "complicated systems during their evolution converge to statistical equilibria". This convergence is called "the mixing", and the thesis above is, for example, one of postulates of the theory of turbulence. (For the situation which appears there, it still is not justified due to extreme complexity of the 3d Navier-Stokes system, which governs motion of fluids and gases).
Learning Objectives

Learning Objectives

  • -
Expected Learning Outcomes

Expected Learning Outcomes

  • ---
Course Contents

Course Contents

  • Some basics from probability and measure theory.
  • Independence, conditional expectation and conditional probability.
  • Spaces of measures and metrics on them.
  • Markov processes in metric spaces: Transition function and Markov semigroups; Construction of a Markov process from a transition function.
  • Markov property. Stopping times and strong Markov property.
  • Markov processes, defined by stochastic equations.
  • Doeblin condition and Doeblin mixing theorem.
  • Harris’ mixing theorem.
  • Law of large numbers.
  • Some examples from physics.
Assessment Elements

Assessment Elements

  • non-blocking HW
  • non-blocking Midterm
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    0, 1 ∗ 𝐻 + 0, 4 ∗ 𝑀 + 0, 5 ∗ 𝐹 where 𝐻 is for the home work grade, 𝑀 is for the midterm grade and 𝐹 is for the final exam grade.
Bibliography

Bibliography

Recommended Core Bibliography

  • Вероятность. Кн.1: Элементарная теория вероятностей. Математические основания. Предельные теоремы, Ширяев, А. Н., 2017
  • Вероятность. Кн.2: Суммы и последовательности случайных величин - стационарные, мартингалы, марковские цепи, Ширяев, А. Н., 2017

Recommended Additional Bibliography

  • Случайные процессы : учебное пособие, Шалимов, А. С., 2024

Authors

  • Skripchenko Aleksandra Sergeevna
  • Иконописцева Юлия Вахтаногвна