Бакалавриат
2021/2022
Геометрия
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Математика)
Направление:
01.03.01. Математика
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
11
Контактные часы:
252
Программа дисциплины
Аннотация
Освоение дисциплины «Линейная алгебра и геометрия» является необходимым пререквизитом для большинства курсов, читаемых на факультете математики. В первую очередь к ним относятся курсы алгебры и анализа второго года обучения, анализ на многообразиях и функциональный анализ, теория дифференциальных уравнений, теория представлений, алгебраическая и дифференциальная топология, алгебраическая и дифференциальная геометрия и целый ряд других фундаментальных и прикладных курсов.
Цель освоения дисциплины
- Целью изучения дисциплины является освоение основ линейной и матричной алгебры, их вычислительных и теоретических методов, а также воспитание геометрической интуиции и приобретение опыта работы с геометрическими фигурами в многомерных евклидовых, аффинных и проективных пространствах, в эллиптических пространствах и пространствах Лобачевского.
Планируемые результаты обучения
- Умение решать задачи на взаимное расположение прямых и точек в двумерном аффинном пространстве, решать системы линейных уравнений размера 2x2 по правилу Крамера, пользоваться барицентрическими координатами и центрами тяжести
Содержание учебной дисциплины
- Векторное пространство k^2
- Евклидова плоскость = комплексная прямая.
- Линейные и аффинные преобразования плоскости, дифференциал аффинного преобразования.
- Определение и примеры векторных пространств.
- Подпространства.
- Линейные отображения, размерность ядра и образа, непустые слои являются сдвигами ядра.
- Матричная запись и различные геометрические интерпретации систем линейных уравнений и их решений.
- Двойственное пространство, примеры линейных форм на различных пространствах.
- Объём ориентированного параллелепипеда, полилинейные кососимметричные и знакопеременные формы, пространство кососимметричных $n$-лилинейных форм на $n$-мерном пространстве одномерно.
- Евклидовы пространства.
- Ортогональные преобразования и движения, описание движений плоскости и трёхмерного пространства.
- Собственные векторы и собственные подпространства линейных операторов.
- Одновременная диагонализация произвольного множества коммутирующих операторов, общие собственные векторы коммутирующих операторов.
- Билинейные формы, их корреляции и матрицы Грама, преобразование матрицы Грама при замене базиса.
- Ортогонализация симметричной билинейной формы над произвольным полем, специализации над полями R, C и F(p).
- Кососимметричные билинейные формы.
- Проективные пространства и проективизация, однородные координаты, аффинные карты и локальные аффинные координаты.
- Симметрическая агебра векторного пространства и задание фигур однородными уравнениями, проективное замыкание аффинной гиперповерхности.
- Группа PGL(V).
- Геометрия гладких проективных квадрик.
- Пространство квадрик, гладкие точки и касательное пространство к гиперповерхности особых квадрик, пучки квадрик, коранг особой квадрики пучка не меньше кратности соответствующего корня характеристического многочлена.
- Конформная теория коник на евклидовой плоскости.
- Аффинные пространства.
- Выпуклая геометрия в R^n.
- Евклидова геометрия квадрик в R^n.
- Эллиптическое пространство E = P(V).
- Пространство Лобачевского L⊂ P(V)$, где V — вещественное векторное пространство с невырожденной квадратичной формой сигнатуры (1, n), состоит из точек с положительным скалярным квадратом.
- Конформная модель гиперболического пространства в шаре.
- Геометрия кватернионов, понимаемых как комплексные матрицы 2x2, инвариантные относительно вещественной структуры, переводящей стандартную эрмитову форму на пространстве матриц в поляризацию квадратичной формы det.
Элементы контроля
- контрольная работакаждый семестр - 4 контрольные работы
- решение листков задач− самостоятельное решение задач из выдаваемых в течение семестра листков с заданиями, которое оценивается числом
- коллоквиум− устный коллоквиум по итогам первого модуля, который оценивается целым числом
- экзамен− письменный экзамен в конце семестра
- работа на семинарахкаждый ведущий упражнения преподаватель выставляет каждому студенту своей группы оценку СЕМ (целое число в пределах от 0 до 100) за работу на семинарах по правилам, которые он сообщает на первом занятии
Промежуточная аттестация
- 2021/2022 учебный год 2 модульНа итоговую отметку за первый семестр влияют: оценка C за коллоквиум, оценка S за работу на семинаре, которую по 100-бальной шкале поставит Вам ведущий у Вас семинары преподаватель согласно правилам, которые он Вам сообщит на одном из первых занятий, а также доли L, K, E решённых Вами в течение семестра задач из листков (L), контрольных работ (K) и итогового письменного экзамена (E), вычисленные в процентах от общего числа обязательных задач, заданных в течение семестра в каждом из этих видов, по формуле: 100(суммарное число решённых задач, включая необязательные)/(суммарное число обязательных задач). Обратите внимание, что это число может быть больше 100. Итоговая оценка вычисляется по формуле: min(400,С+S+L+K+E)/40 Таким образом, для получения максимальной оценки 10 достаточно иметь по 80 баллов в каждом из пяти видов программы, или каким-то другим способом набрать в сумме 400 баллов. При наборе меньшей суммы оценка уменьшается линейно и округляется до целого числа по стандартным правилам округления (до ближайшего целого, полуцелые округляются вверх).
- 2021/2022 учебный год 4 модульНа итоговую отметку влияют: оценка S за работу на семинаре, которую по 100-бальной шкале поставит Вам ведущий у Вас семинары преподаватель согласно правилам, которые он Вам сообщит на одном из первых занятий, а также доли L, K, E решённых Вами в течение семестра задач из листков (L), контрольных работ (K) и итогового письменного экзамена (E), вычисленные в процентах от общего числа обязательных задач, заданных в течение семестра в каждом из этих видов, по формуле: 100(суммарное число решённых задач, включая необязательные)/(суммарное число обязательных задач). Обратите внимание, что это число может быть больше 100. Итоговая оценка вычисляется по формуле: min(300,S+L+K+E)/30. Таким образом, для получения максимальной оценки 10 достаточно иметь по 75 баллов в каждом из четырёх видов программы, или каким-то другим способом набрать в сумме 300 баллов. При наборе меньшей суммы оценка уменьшается линейно и округляется до целого числа по стандартным правилам округления (до ближайшего целого, полуцелые округляются вверх).
Список литературы
Рекомендуемая основная литература
- Городенцев, А. Л. Алгебра. Учебник для студентов-математиков : учебное пособие / А. Л. Городенцев. — Москва : МЦНМО, [б. г.]. — Часть 1 — 2014. — 485 с. — ISBN 978-5-4439-2087-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56398 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Винберг, Э. Б. Курс алгебры : учебник / Э. Б. Винберг. — 2-е изд. — Москва : МЦНМО, 2013. — 590 с. — ISBN 978-5-4439-2013-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56396 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.