• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Математический анализ

2019/2020
Учебный год
RUS
Обучение ведется на русском языке
4
Кредиты
Статус:
Курс обязательный
Когда читается:
2-й курс, 1, 2 модуль

Преподаватели

Программа дисциплины

Аннотация

Основное содержание курса математического анализа третьего семестра связано с интегралами, зависящими от параметра, преобразованием Фурье, функциональными рядами, включая степенные ряды и ряды Фурье, а также криволинейными и поверхностными интегралами.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Математический анализ» являются: 1. Формирование компетенций, предусмотренных ФГОС основной образовательной программы и закрепленных в учебном плане за данной дисциплиной; 2. Формирование у студентов базовых знаний о методах классического математического анализа; 3. Формирование у студентов знаний по теоретическим основам математического анализа и понимания его места и роли в системе современной науки и техники; 4. Формирование навыков работы с функциями, последовательностями и интегралами; 5. Получение студентами навыков и умений решать стандартные задачи математического анализа; 6. Формирование у студентов навыков применения методов математического анализа в исследовательской деятельности.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знакомство с функциями Эйлера. Выработка навыков работы с интегралами, зависящими от параметра.
  • Формирование навыков работы с функциональными последовательностями и рядами.
  • Формирование навыков работы с рядами Фурье и степенными рядами.
  • Выработка навыков работы с преобразованием Фурье обычных и обобщенных функций.
  • Выработка навыков работы с криволинейными и поверхностными интегралами.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Интеграл, зависящий от параметра и функции Эйлера.
    Равномерная сходимость интегралов, зависящих от параметра. Непрерывность и дифференцируемость интеграла по параметру. Гамма и бета-функции Эйлера.
  • Функциональные последовательности и ряды.
    Виды сходимости функциональных последовательностей и рядов.
  • Степенные ряды и ряды Фурье.
    Евклидовы пространства и ортонормированные базисы. Равенство Парсеваля. Неравенство Бесселя. Ряд Фурье по тригонометрической системе. Сведения о сходимости ряда Фурье в точке. Достаточное условие равномерной сходимости. Полнота тригонометрической системы. Радиус сходимости степенного ряда. Бесконечная дифференцируемость суммы степенного ряда в круге сходимости. Достаточные условия представимости функции степенным рядом.
  • Преобразование Фурье.
    Преобразование Фурье интегрируемых функций. Формула обращения. Класс S и преобразование Фурье в нем. Равенство Парсеваля для интегралов Фурье. Обобщенные функции. Преобразование Фурье обобщенных функций. Классы Соболева функций с обобщенными производными. Применение к дифференциальным уравнениям с частными производными.
  • Криволинейные и поверхностные интегралы.
    Меры Хаусдорфа и поверхностные меры. Криволинейные и поверхностные интегралы. Дифференциальные формы и их интегрирование. Формулы Грина, Стокса и Гаусса – Остроградского. Формулы векторного анализа.
Элементы контроля

Элементы контроля

  • неблокирующий Домашние задания, контрольные и коллоквиумы
  • блокирует часть оценки/расчета экзамен
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    Накопленная оценка за работу в семестре (за текущий контроль) следующая: Н=0.2 Кр1+0.2 Кр2+0.5 (Кол1+Кол2+...)/Nкол+0.1 Дз, где Кр1 и Кр2 — оценки за контрольные работы, Кол1, Кол2 и т.д. — оценки за коллоквиумы, Nкол – число коллоквиумов в этом семестре, Дз — итоговая оценка за выполнение домашних заданий в текущем семестре. Итоговая оценка за семестр (промежуточная аттестация) В семестрах 1 и 2 итоговая оценка (ИО1 и ИО2) определяется по формуле ИО=0.5 Н+0.5 Э, где Н — накопленная в семестре оценка, Э — оценка на экзамене. При вычислении итоговой оценки в случае дробного результата округление производится до ближайшего целого числа в большую сторону. В завершающем семестре курса (2 курс, 1 семестр) итоговая оценка за весь курс определяется по формуле ИО=ИО1/3+ИО2/3+Н/6+Э/6, где ИО1 и ИО2 — итоговые оценки в первых семестрах, Н — накопленная оценка в текущем семестре, Э — оценка на экзамене в текущем семестре. При вычислении итоговой оценки в случае дробного результата округление производится до ближайшего целого числа в большую сторону.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров А. М., Шабунин М. И., 2000

Рекомендуемая дополнительная литература

  • Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович Б. П., 2004