• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

HSE University Opens Joint Laboratory with Samsung Research

© Signature/ iStock

Samsung-HSE Laboratory will develop mechanisms of Bayesian inference in modern neural networks, which will solve a number of problems in deep learning. The laboratory team will be made up of the members of the Bayesian Methods Research Group — one of the strongest scientific groups in Russia in the field of machine learning and Bayesian inference. It will be headed by a professor of the Higher School of Economics Dmitry Vetrov.

Neural networks and Bayesian models are two popular paradigms in the field of machine learning. The first made a real revolution in the field of processing of big data, giving rise to a new direction, dubbed deep learning. The latter have traditionally been used to process small data. A new mathematical tool, developed in 2010, allows you to design scalable Bayesian models. This makes it possible to apply the mechanisms of Bayesian inference in modern neural networks. Even the first attempts to construct hybrid neuro-Bayesian models lead to unexpected and interesting results. For example, by using Bayesian inference in neural networks, it is possible to compress the network by approximately 100 times without losing the accuracy of its operation. On the other hand, in the very procedure of the approximate Bayesian inference one can also use a neural network to approach the exact a posteriori distribution. Thus, mutual penetration of the two technologies is obtained.

Neuro-Bayesian approach can potentially solve a number of open problems in deep learning: the possibility of a catastrophic over fitting for noised data, the self-confidence of a neural network even in erroneous predictions, uninterpretable decision-making, and vulnerability to adversarial attacks. All these problems are recognized by the scientific community, many teams around the world work on their solution, but there are no ready answers yet.

‘Samsung Electronics is one of the world's technological leaders. In our development we use many models of deep learning. But in order to keep up with competitors, it is not enough just to use ready-made models. We need to create new technologies of machine learning. This is all the more important because the field of deep learning has not yet "settled" and every year there are new models, and existing ones quickly become obsolete,’ explains (Geunbae Lee, the Head of the AI Center, Samsung Research). ‘All this means that humanity has not yet found the optimal solution for processing big data. Therefore, cooperation with leading scientific groups in the field of machine learning and artificial intelligence in universities around the world allows us to "keep our finger on the pulse" and keep track of the latest achievements in the field, as well as get exclusive access to technologies created in partner laboratories.’

‘Samsung's decision to choose our group as a key partner in Russia, giving us the opportunity to focus exclusively on basic research, is a sign of recognition of our scientific achievements and at the same time a credit of confidence that we will try to fully justify,’ says the head of the joint laboratory and the head of the Bayesian methods research group, Dmitry Vetrov. ‘Usually large companies try to use scientists to solve specific applied problems. I am glad that our Korean partner understands the importance of research on the development of new technologies, rather than solving specific problems. Our laboratory will deal with the creation of new technologies, that is, the most interesting from the point of view of the scientist. Our goals completely coincide with the wishes of our partners, which serves as a guarantee of successful and long-term cooperation.’

In addition to scientific projects, the HSE-Samsung joint laboratory will actively participate in educational activities. Students and post-graduate students of the Faculty of Computer Science will be attracted to work in it. In August 2018, with the support of Samsung, the second summer school on neuro-Bayesian methods will be held. This time it will be conducted in English and several leading scientists will take part in it. The registration is still open for the summer school.

 

See also:

Machine Learning Algorithm to Reduce Tester Workload

Researchers from HSE University and the Russian Technological University (RTU MIREA) have developed an intelligent system to automate software testing on a variety of platforms. Its computer vision feature is capable of recognising elements in a graphical user interface even after a redesign. The details are published in the Journal of the Siberian Federal University.

HSE University Hosts Third Summer School on Machine Learning in Bioinformatics

Between August 23rd and 25th, the HSE Faculty of Computer Science held its annual summer school on machine learning in bioinformatics. After two years of being held online, the school returned to an offline format for this year. Over three days, more than 120 participants attended lectures and seminars by leading experts in the field from institutions such as HSE University, Skoltech, AIRI, MSU, MIPT, Genotek, and Sber Artificial Intelligence Laboratory.

Machine Learning Helps Improve Perovskite Solar Cells

A team of researchers from HSE MIEM, LPI RAS, and the University of Southern California have applied machine learning to the analysis of internal defects in perovskite solar cells and proposed ways to improve their energy efficiency. The findings of the study performed on the Cs2AgBiBr6 double perovskite can be used to develop more efficient and durable perovskite-based materials. The paper has been published in the Journal of Physical Chemistry Letters.

HSE Faculty of Computer Science and Skoltech Hold Math of Machine Learning Olympiad 2022

HSE's Faculty of Computer Science and the Skolkovo Institute of Science and Technology have held the Mathematics of Machine Learning Olympiad for the fifth time. The participants competed for prizes and the opportunity to matriculate at two universities without exams by enrolling in the HSE and Skoltech joint master's programme in Math of Machine Learning.

Helping the Homeless with AI Technology

A research team from the HSE University Artificial Intelligence Centre led by Ivan Yamshchikov has developed a model to predict the success of efforts to rehabilitate homeless people. The model can predict the effectiveness of the work of organisations for the homeless with about 80% accuracy. The project was presented at a conference dedicated to the activities of social centres.

Machine Learning has Helped Forecast Global Hotspots of Unrest and Revolution

HSE scientists Andrey Korotayev and Ilya Medvedev used machine learning (ML) to build an index of instability in the world. The new method made it possible to use a large number of variables and distribute them in non-standard fashion.

‘Recognition of Our Work Motivates Us to Continue Our Research’

A report by students of MIEM has won a prestigious prize at the 44th International Conference on Telecommunications and Signal Processing organized by Brno University of Technology in the Czech Republic. The project by the HSE students was named the best student work by the organizing committee.

Summer School on Machine Learning in Bioinformatics Held at HSE University

The second international Summer School on Machine Learning in Bioinformatics took place on August 23–27. This year’s school featured 533 participants from 53 countries.

International Data Analysis Olympiad IDAO-2021 Has Started

The registration period for the International Data Analysis Olympiad (IDAO-2021) is open until March 12. The qualifying round has already begun and will run until March 31. This year, the HSE Faculty of Computer Science and Yandex are holding the Olympiad for the fourth time. This year's Platinum Partner is Otkritie Bank. The Olympiad is organised by leading data analysts for their future colleagues—early career analysts and scientists.

‘Borders Between Countries Are Becoming Blurred Thanks to Online Communication’

Professor Oleg Melnikov is among the international professors invited to work remotely with HSE University’s students this academic year. He lives in California, runs the Data Science department at a company in Palo Alto, and teaches at Stanford and other universities in the United States. At HSE University he teaches a course on machine learning for the students of the Faculty of Computer Science and the International College of Economics and Finance (ICEF), as well as a university-wide optional course, ‘Machine Learning in Python’. He spoke about his work in an interview with the HSE News Service.