• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Researchers Begin to Understand Correlation of Schumann Resonances and Dust Storms on Mars

Researchers Begin to Understand Correlation of Schumann Resonances and Dust Storms on Mars

Image by Aynur Zakirov from Pixabay

The interaction of dust particles in Martian dust storms may cause electric fields that are powerful enough to have charges that induce standing electromagnetic waves known as Sсhumann resonances. This is the conclusion drawn by physicists from HSE University, the Space Research Institute, and MIPT. The paper was published in Icarus journal.

Mars has been a focus of active study over the last decade, with researchers looking at possible space missions to the planet. Knowledge about the Martian atmosphere increases the chances that such missions will be successful. In particular, the behaviour of dust particles and the plasma-dust system on the surface of Mars should be taken into account in planning space trips.

In 2009, a 34 m radio telescope of NASA’s Deep Space Network registered a non-thermal microwave radiation during a Martian dust storm. In the observed radiation spectrum, attributes of Schumann resonances were detected at frequencies of 7.83 Hz, 14.1 Hz, and 20.3 Hz.

Researchers from HSE University, the Space Research Institute and MIPT looked at the role of dust and dust plasma in the excitement of ultra-low-frequency (below 100 kHz) standing electromagnetic waves on Mars. Since the mid-1950s, this phenomenon has been known as Schumann resonances, after Otto Schumann, an Austrian scholar who was the first to study standing electromagnetic waves in an Earth-ionosphere resonator.

For electromagnetic waves, the Earth and its ionosphere are a huge spherical resonator, with its cavity filled with a weakly electrically conductive medium. If an electromagnetic wave that evolves in this medium goes around the Earth and resonates itself, it can exist for a long time.

Schumann resonances on Earth are presumably caused by thunderstorm charges in the spherical cavity between the planet’s surface and the lower layers of the ionosphere.

Sergey Popel

Sergey Popel, Professor at the HSE Faculty of Physics, Laboratory Head at RAS Space Research Institute

‘Lightning activity is related to average temperature on Earth. Observations also confirm a correlation between the temperature and the amplitudes of Schumann resonances on Earth. This data has become a foundation for our studies of similar phenomena on Mars.’

The scholars analysed the mechanism that ensures the loading of power in the Schumann resonator. It turned out that electrical discharges are a ‘good candidate’. But these electrical discharges have a different nature as compared to Earthly lightnings. Lightnings in their Earthly understanding are not typical for Martian atmosphere in which dust swirls, also called ‘dust devils’, are widespread. They are small storms measuring about 100 m in diameter that last several minutes. That’s why there are no analogues to Earthly meteorological clouds in the rare and dry Martian atmosphere, but dust phenomena play an important role.

The process of charging the dust particles in the Martian atmosphere has similarities with the processes that take place in volcanic clouds on Earth: two particles consisting of the same material collide, and the smaller one gets a negative charge, while the bigger one charges positive. Under gravity, the heavier positively charged particles gather in the lower parts of dust swirls, while lighter negatively charged particles remain in the upper part. Charges separate, which may lead to electrical discharge.

However, the authors of the paper state that as of yet there is no unambiguous experimental evidence that would confirm the existence of electric discharges in the atmosphere of Mars. Orbital modules that study Mars usually study the upper layers of the atmosphere, while the lower layer remains outside their monitoring zone. To know for sure whether there are Schumann resonances on Mars, the electric fields on the surface of the planet need to be measured.

‘Ideally, we should measure the amplitude of Schumann oscillations and understand whether there is a correlation between changing amplitudes of Schumann resonances and the changes in intensity of dust storms on Mars,’ Sergey Popel said. ‘But to do it, we would need some highly sensitive equipment.’

No such projects have been planned yet, but the second stage of ExoMars mission, which is scheduled for the latter half of 2022, will probably contribute to these studies.

See also:

Russian Scientists Discover Method for Enhancing the Capacitance of Supercapacitors

A supercapacitor is a device capable of rapidly storing and releasing a significant amount of energy within a matter of seconds. It consists of metal electrodes immersed in an electrolyte solution. In their model, MIEM HSE scientists substituted the conventional low-molecular-weight electrolyte with a polyelectrolyte, resulting in an unexpected and adverse physical phenomenon: supercapacitors experience a reduction in capacitance when the pore size of the electrode is below 1 nm. By carefully selecting optimal conditions for polyelectrolytes, it becomes possible to develop supercapacitors that are not only more robust but also more efficient in their performance. The study has been published in Physical Review E.

Physicist from HSE University-St Petersburg Ranked Russia’s Number One Scientist in Electronics and Electrical Engineering by Research.com

The academic platform Research.com has published a ranking of the best scientists in the field of electronics and electrical engineering in 2022. In Russia, first place in Electronics and Electrical Engineering went to Alexey Zhukov, Academic Supervisor of the International Laboratory of Quantum Optoelectronics, Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences.

Using Simple Salts to Produce Safer Electrolytes for Aqueous Batteries

A team of Russian scientists including HSE MIEM researchers have used superconcentrated salt solutions to produce effective water-based electrolytes that demonstrate high conductivity and electrochemical stability and require lower amounts of non-toxic salts, making the batteries safer and less expensive than classical non-aqueous ones. The study is published in The Journal of Physical Chemistry C.

Tunnelling Contact Helps to Study Electron Structure of Carbon Nanotubes

Russian physicists have demonstrated how tunnelling contacts can be used for single-particle states spectroscopy in carbon nanotubes. The proposed technology of tunnelling contact fabrication and the spectroscopic method will help measure the exact nanotube bandgap value, which is the key characteristic required for design of any nanotubes-based electronic devices. Applied Physics Letters publishes the result of the study.

Researchers Compare Energy Consumption During Extraction and Synthesis of One Diamond Carat

Researchers from HSE University, RAS, and Skoltech have compared actual specific energy consumption in the production of diamonds using traditional (mining) and innovative (synthesis) methods. Depending on the technology, 36 to 215 kWh of energy is consumed to produce a 1 carat diamond. It turned out that not all diamond synthesis technologies surpass extraction methods in terms of energy efficiency. The results of the study were published in the journal Energies.

Statistical Physics Can Help Uncover the Impact of Media on Decision Making

Students and researchers from HSE University and the Landau Institute for Theoretical Physics have examined the widely known ‘Prisoner’s Dilemma’ game using methods from statistical physics. They used the mean-field concept, a common tool for studying the physics of many-particle systems, to describe human decision-making processes. Researchers suggest that this model may be helpful for understanding systems with many participants. The results of the study are published in the September issue of the Physics Review Research journal.

Scholars Gain New Data on Heavy Exotic Hadrons

As part of the Belle experiment, researchers were able to measure the energy dependence of e+e- -> B-anti-B, B-anti-B* and B*-anti-B* reactions in the 10.63 GeV to 11.02 GeV energy range for the first time. The new data will help clarify the nature of the group of exotic Upsilon mesons that have mass in this range. The results of the study were published in the Journal of High Energy Physics.

Researchers Explain Potential Cause of Earth’s Green Airglow

A team of Russian researchers from HSE University, the Russian Space Research Institute, and the Pushkov Institute of Terrestrial Magnetism (Russian Academy of Sciences) has described the development of modulational instability of electromagnetic waves in dusty ionospheric plasma, which is caused by a high intensity of electromagnetic emissions. The researchers considered inelastic collisions of ionospheric plasma particles and formulated new tasks and applications to be addressed at a later stage. The results are published in the Physics of Plasmas journal.

Russian Researchers Obtain New Data on Solar Magnetic Field Asymmetry

Researchers from the Institute of Earthquake Prediction Theory and Mathematical Geophysics (Russian Academy of Science) and HSE University have proven that asymmetry between meridional flows in the northern and southern hemispheres of the Sun depends on the anomalies of the solar magnetic field. Research undertaken by Elena Blanter and Mikhail Snirman reveals new aspects of the importance of solar magnetic field asymmetry for predicting the anomalies of the Sun’s activity. The article has been published in Solar Physics.

Charmed, Doubly Strange

LHCb (Large Hadron Collider beauty) collaboration, one of the LHC (Large Hadron Collider) experiments, reported that their detector has identified particles that have not previously been detected in physics experimentally – excited omega baryons (Ω-b). Just several years ago, detecting such particles in LHC was believed to be next to impossible. Among proton particles, the excited ‘charmed omegas’ were preselected by an algorithm created by staff from the HSE Laboratory of Methods for Big Data Analysis  and Yandex LLC. IQ.HSE talked to Denis Derkach and Fedor Ratnikov about their collaboration’s ‘fresh catch’ and about the point of ‘fishing’ on LHCb in general.