• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Возникновение турбулентности смоделировали на уровне атомов

Возникновение турбулентности смоделировали на уровне атомов

© iStock

Ученые из НИУ ВШЭ и МФТИ разработали суперкомпьютерный метод моделирования жидкости на атомных масштабах, позволяющий описывать возникновение турбулентных режимов течения. Исследователи рассчитали на суперкомпьютерах «cHARISMa» и «Десмос» течение жидкости, состоящей из нескольких сотен миллионов атомов. Метод уже применяется для моделирования течения жидкометаллического свинцового теплоносителя в ядерном реакторе. Работа опубликована в The International Journal of High Performance Computing Applications.

В компьютерном моделировании жидкость обычно описывают как сплошную среду, лишенную дискретности, а ее течение определяют с помощью численного решения дифференциальных уравнений Навье — Стокса. Такие модели называются континуальными, и в них не описывается поведение отдельных атомов и молекул жидкости. В прикладных задачах ученых очень часто интересует не спокойное — ламинарное, а турбулентное течение, когда потоки жидкости образуют вихри разного размера, меняющиеся во времени и пространстве стохастически. В 1940-е годы советский математик академик Андрей Николаевич Колмогоров создал теорию эволюции вихрей в турбулентных потоках, показав, что большие вихри измельчаются в маленькие вплоть до десятков и сотен нанометров. При таких размерах (на колмогоровском масштабе длины) континуальные методы не работают, и нужно моделировать поведение отдельных атомов и молекул, численно решая их уравнения движения. Переход к подобному дискретному описанию может быть критически полезен для некоторых специальных случаев. Например, так можно изучать диффузию и образование кластеров частиц в турбулентном потоке. Конечно, эти процессы можно рассматривать в континуальном приближении, однако корректность используемых допущений можно проверить только с помощью атомистического моделирования.

Для изучения зарождения турбулентности ученые из НИУ ВШЭ и МФТИ разработали концепцию, позволяющую наблюдать быстрое течение жидкости, огибающей препятствия, на микрометровых масштабах. Ученые придумали способ, как удержать поток жидкости в ограниченных размерах, затем реализовали его в двух программах для молекулярного моделирования. Также исследователи проанализировали производительность суперкомпьютеров, на которых проводились расчеты, и пути ее оптимизации.

Владимир Стегайлов

«Мы получили естественный поток жидкости с завихрениями, которые возникают сами собой в результате обтекания препятствия на масштабах в сотни миллионов атомов, чего до нас еще не делали. Цель нашего нового метода — получать данные для особых случаев, таких как диффузия, течение возле стенок, чтобы физически правильно сопрягать атомный и континуальный масштаб в тех областях моделирования, где эта смычка является критически важной», — комментирует руководитель научной группы, ведущий научный сотрудник Международной лаборатории суперкомпьютерного атомистического моделирования и многомасштабного анализа НИУ ВШЭ, заведующий лабораторией суперкомпьютерных методов в физике конденсированного состояния МФТИ Владимир Стегайлов.

Моделируемая система представляла собой плоский квазидвумерный параллелепипед, внутри которого находилось цилиндрическое препятствие и от нескольких миллионов до нескольких сотен миллионов атомов жидкости. К тепловым скоростям атомов добавлялась заданная скорость потока, и если она была достаточно большой, то после огибания цилиндра спонтанно формировались турбулентные вихри. Так ученые смогли в естественных условиях промоделировать возникновение предтурбулентного режима течения, не накладывая на движение жидкости иных специальных условий.

Сложность моделирования состояла в том, что частицы в процессе движения должны покидать пределы параллелепипеда. Обычно в атомистическом моделировании применяют периодические граничные условия, когда атомы, условно покинувшие систему справа, на следующем шаге расчетов искусственно возвращаются в систему слева с той же скоростью и направлением движения. Таким образом, система остается замкнутой. Этот метод наиболее вычислительно простой. В задаче с вихрями физикам пришлось придумать такие периодические условия, чтобы при переходе границы системы течение переставало быть турбулентным, иначе после возвращения атомов в параллелепипед налетающая на препятствие жидкость уже была бы турбулентной, что нарушило бы постановку задачи. Ученые предложили расположить возле правой границы системы виртуальные плоскости, после пересечения которых скорость частиц перерассчитывалась, течение становилось нормальным (ламинарным), а значит, возвращение атомов не нарушало условие ламинарности натекающего потока.

На рисунке изображена ячейка моделирования в боковой проекции. Белым цветом обозначено цилиндрическое препятствие. Более синие участки соответствуют большей плотности частиц, светлые — меньшей плотности. Видно, что после прохождения препятствия возникают завихрения, характеризующиеся разной плотностью частиц. Также справа заметны плоскости, после пересечения которых происходит перераспределение скоростей частиц и поэтапная ламинаризация потока.

После теоретического обоснования предложенных граничных условий ученые внедрили их в широко используемые программы для молекулярного моделирования LAMMPS и OpenMM и рассчитали течение жидкости на суперкомпьютерах с графическими ускорителями. Отдельное внимание ученые уделили сохранению максимальной производительности вычислений, поскольку в системах из миллионов атомов, для которых рассчитывается несколько миллионов временных шагов, миллисекундное ускорение на одном вычислительном шаге приводит к экономии нескольких дней и даже недель работы суперкомпьютера.

Владислав Галигеров

Студент магистратуры МИЭМ НИУ ВШЭ Владислав Галигеров, один из двух главных авторов статьи, добавляет: «Сейчас все больше развиваются инструменты для глубокого анализа производительности, например инструмент анализа параллельных программ Score-P, который мы использовали в данной работе. Очень важно выработать стандарты работы с такими инструментами, чтобы разработчики программ для суперкомпьютеров, внося изменения в существующий код или написав что-то новое, могли провести анализ в соответствии с ними и оценить, насколько эффективным будет их приложение на различных архитектурах суперкомпьютеров, включая те, к которым они не имеют доступа».

Для анализа в работе использовали суперкомпьютер «Десмос» Объединенного института высоких температур РАН и суперкомпьютер «cHARISMa» НИУ ВШЭ.

На видео демонстрируется ячейка моделирования с 230 миллионами атомов в боковой проекции. Цвет показывает локальную плотность частиц. Более синие участки соответствуют большей плотности частиц, светлые — меньшей плотности. Видно, что после обтекания цилиндра в потоке образуется стохастическая вихревая дорожка Кармана. Также справа заметны плоскости, после пересечения которых происходит перераспределение скоростей частиц и поэтапная ламинаризация потока.

Вам также может быть интересно:

МИЭМ НИУ ВШЭ начинает совместный научный проект с Китаем

Профессор Лев Щур, научный руководитель магистерской программы «Суперкомпьютерное моделирование в науке и инженерии» МИЭМ НИУ ВШЭ, и профессор Хай-Чин Лин, директор Исследовательского центра компьютерных наук (CSRC) заключили соглашение о начале совместного научного проекта в области вычислительной физики и высокопроизводительных вычислений.

Студенты МИЭМ НИУ ВШЭ смогут принять участие в работе над синхронизацией суперкомпьютеров

В рамках магистерской программы МИЭМ НИУ ВШЭ «Суперкомпьютерное моделирование в науке и инженерии» планируются уникальные исследования на стыке наук. Решать актуальные задачи высокопроизводительных вычислений и интеллектуальной обработки данных большого объема студенты будут при помощи знаний математики, физики, материаловедения, социальных наук, геномики, информатики. Что дает такой междисциплинарный подход, разберем на примере недавнего исследования аспирантки Лилии Зигануровой и профессора Льва Щура — руководителя магистерской программы.

В магистратуре МИЭМ научат разрабатывать алгоритмы для компьютеров будущего

В этом году в МИЭМ ВШЭ открывается новая магистерская программа – «Суперкомпьютерное моделирование в науке и инженерии» по направлению «Прикладная математика». Ее выпускники будут специализироваться в междисциплинарной области компьютерных технологий, естественных и инженерных наук.