• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Losing Money Multiple Times Causes Plastic Changes in the Brain

Losing Money Multiple Times Causes Plastic Changes in the Brain

© iStock

Researchers at the HSE Institute for Cognitive Neuroscience have shown experimentally that economic activity can actively change the brain. Signals that predict regular financial losses evoke plastic changes in the cortex. Therefore, these signals are processed by the brain more meticulously, which helps to identify such situations more accurately. The article was published in Scientific Reports.

The sight of an envelope from the tax authority, a falling currency rate, or a sad face of your chief accountant can mean impending financial troubles. How does the brain learn to recognize situations like this? Do these situations cause changes in brain function? These questions were studied by cognitive neuroscientists at HSE University using a popular economic game - the monetary incentive delay task (MID Task).

The MID Task requires that a person respond quickly to a signal that signals an opportunity to receive a reward or avoid a loss. It also allows you to divide brain mechanisms reward processing into separate stages: expectation of reward and learning.

Anna Shestakova,
Chief Research Fellow, Director, Centre for Cognition & Decision Making

We hypothesized that, like the plastic changes in the brain during the learning of a second language or playing a musical instrument, similar neuroplastic changes occur for certain signals that are associated with important economic outcomes. For example, the sound of a slot machine can for a long time be associated with a big win or loss while visiting a casino, which causes a particularly strong reaction in our brain in the future.

The subjects (29 people) took part in an economic game in which sound signals predicted losses of various sizes: the participants could lose between one and fifty-one monetary units in each round of the game. Participants had to quickly and accurately respond to audio signals to avoid monetary losses.

The study showed that participating in such a game leads to plastic changes in the auditory cortex of the brain, which begins to more accurately distinguish sounds that are associated with large financial losses. Moreover, scientists have demonstrated a link of this plastic change of the brain with the ‘learning signal’ generated by the human brain during performance of the MID Task. Subjects with a more pronounced neural ‘learning signal’ demonstrated stronger plastic changes in the nervous system.

The results of the experiment suggest that life's economic experience can lead to changes in the brain, which alters how external signals are perceived. Interestingly, the brain learns to identify important economic signals automatically. Moreover, scientists have shown precisely how this rewiring of the brain occurs and have demonstrated the role of individual differences in brain learning systems using the neurotransmitter dopamine.

Aleksey Gorin,
Junior Research Fellow, International Laboratory of Social Neurobiology 

This is the first experimental evidence to show that economic activity can actively change the brain. Signals leading to financial losses evoke rather fast neuroplastic changes. Therefore, they are identified by the brain automatically, and do not require voluntary attention.

See also:

Movement Recovery after Stroke Depends on the Integrity of Connections between the Cerebral Cortex and the Spinal Cord

A team of scientists, with the first author from the HSE University, were investigating which factors are the most important for the upper limb motor recovery after a stroke. The study is published in Stroke, the world's leading journal for cerebrovascular pathology.

The Shorter the Delay, the More Effective the Neurofeedback

HSE University scientists have for the first time in the world investigated the impact of delayed reinforcement signals in neurofeedback (NFB) training. They have experimentally proven that reducing the delay in feedback (decreasing feedback latency) can significantly increase the efficacy of training. 

HSE University Evaluated the Diagnostic Validity of the SARS Test

Researchers at the HSE University Centre for Language and Brain, in cooperation with a professor of neuropsychology from Lomonosov Moscow State University and specialists from the Centre for Speech Pathology and Neuro-rehabilitation, evaluated the diagnostic validity of the Standardized Assessment of Reading Skills in Russian (SARS) and checked whether the available normative data are current. The results of the study, the updated levels for reading speed, as well as the control levels for evaluating these indicators, were published in The Russian Journal of Cognitive Science. 

Russian Research Team Gains Deeper Insight into the Workings of the Human Brain during Group Problem Solving

A team of Russian researchers with the participation of a leading researcher at HSE University, Ekaterina Pechenkova, found that during group problem solving the components of the social brain are co-activated, but they do not increase their coupling during cooperation as would be suggested for a holistic network. The study was published in Frontiers in Human Neuroscience.

Neural Networks Can Now Make Personality Judgments Based on Our Photographs

Many people are able to recognize the personality traits of the person they are talking to by their facial features. Experts in non-verbal communication can do this even with a photograph. But is it possible to teach artificial intelligence to do the same?

Attention and Atención: How Language Proficiency Correlates with Cognitive Skills

An international team of researchers carried out an experiment at HSE University demonstrating that knowledge of several languages can improve the performance of the human brain. In their study, they registered a correlation between participants’ cognitive control and their proficiency in a second language.

Two HSE Projects Win ‘Mega-Grant’ Competition

A ‘Mega-Grant’ Competition for ground-breaking research projects funded by the Russian Ministry of Science and Higher Education was held for the seventh time, and this year’s competition winners included two projects that will be based at HSE University campuses. One research group will study dynamic systems at HSE – Nizhny Novgorod, and a new social neurobiology laboratory will begin work at HSE University in Moscow.

Upcoming Neuroeconomics Symposium Aims to Share New Research and Build International Collaboration

On September 23-24, the CCCP19 Symposium ‘Cognition, Computation, Neuroeconomics and Performance’ will be held at HSE University. The goal of the symposium is to exhibit cutting edge research at the CCDM, a leading cognitive neuroscience research centre in Russia, and LNC2, a leading European research centre in neuroeconomics, cognitive neuroscience and neural theory. Ahead of CCCP19, the HSE News Service spoke with the conference organizer and several invited speakers about the plan for this symposium and the importance of their research in the field.

‘We Want to Talk About How the Human Brain and Machine Intelligence Work’

In a competition for science bloggers held at HSE University, Vladimir Mikheev and Vikotria Zemlyak were among the top performers. The students of the English-taught Master’s programme ‘Cognitive Sciences and Technologies: From Neuron to Cognition’ produce ‘Neirochai’ (‘NeuroTea’), a science podcast. The duo spoke with the HSE News Service about their guests, their listeners and their future plans.

From Spain’s Basque Country to Moscow, an HSE Research Fellow Studies Human Memory and Metamemory

After receiving her PhD in Psychology from the University of the Basque Country, Beatriz Martín-Luengo arrived in Moscow in 2015 to join the Centre for Cognition & Decision Making at HSE as a Research Fellow. Since then, she has pursued research interests that focus on the ecological study of human memory (i.e., variables that affect our recollection) and metamemory, which is the introspective knowledge of one's own memory capabilities (and strategies that can aid memory) and the processes involved in memory self-monitoring.