• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Neural Networks of Power: AI Unravels Knots and Tangles in Relationships between Humans, Elves and Hobbits

Neural Networks of Power: AI Unravels Knots and Tangles in Relationships between Humans, Elves and Hobbits

Photo: Wikimedia Commons

One of the most popular writers of the last century, John Ronald Reuel Tolkien, was born on January 3rd. Researchers from HSE University, AIRI and MISSIS have used machine learning to explore the social connections between the characters of his Middle-earth universe. The algorithm managed to create an accurate picture of the social structures and dynamics of the characters' relationships, providing a unique map of interactions in the epic world. The researchers believe that this approach can be applied in many areas beyond literature. The results of the work were published in IEEE Xplore.

The analysis of literary works is a complex and time-consuming process. When reading any text, the researcher needs to capture numerous nuances and features — from the author's style and word choice to the relationships between characters and their role in the plot. Most often, this work is done manually by literary critics. Ilya Makarov, Senior Research Fellow at the School of Data Analysis and Artificial Intelligence at the HSE Faculty of Computer Science, head of the ‘AI in Industry’ group at the Artificial Intelligence Research Institute (AIRI), and Anastasia Yaschenko, HSE University graduate, applied computational linguistics and machine learning tools to a series of books by John Ronald Reuel Tolkien about Middle-earth. The AI ‘read’ the books, isolating the key elements: the characters, their belonging to a particular race and their social ties. It demonstrated the results in the form of a graph, which allows us to not only trace the relationship between the characters, but also to see more clearly the structure of their social network.

Ilya Makarov

Ilya Makarov

Senior Research Fellow at the School of Data Analysis and Artificial Intelligence

‘We chose the world of Middle-earth as the basis for our analysis for a number of key reasons. Firstly, J. R. R. Tolkien's texts are widely known and loved by readers around the world, which makes the study universal and global. Secondly, the system of characters in Tolkien's books is very rich and diverse, which creates optimal conditions for such an analysis. Finally, thanks to the long history of studying Tolkien's world, a large set of metadata is available, including detailed descriptions of characters and their race, which facilitates the process of automatic clustering and verification of results.’

The main goal was to create a program that could ‘understand’ human language, analyse literary texts, identify the characters of the book and determine their relationship. This work is based on the concept of social networks. This is an approach widely used in sociology, psychology and more recently in the field of computer science. In the context of literature analysis, each character is considered as a node, and the interactions between them are the edges connecting these nodes. When two characters interact with each other in the text, a connection, or edge, is established between their nodes. The more interactions occur between the characters, the stronger this edge is.

The use of machine learning algorithms has made it possible to automatically analyse texts and identify such interactions between characters, turning literary works into simulated social networks. Named Entity Recognition (NER), a natural language processing technology was used to automatically identify and classify entities in the text, such as names, places and organisations.

This technology helped scientists to create a list of each unique character mentioned in the books. Further semantic analysis allowed them to determine the race of each character. It was conducted by analysing the context and linking each character to a specific race based on the words and phrases that accompany his mention. For example, if a character is often referred to in context with the words ‘elf’ or ‘elvish; the algorithm classifies them as an elf. Due to the large amount of metadata of J. R. R. Tolkien's characters (races, related relationships, belonging to a certain kingdom, etc.) the researchers chose racial characteristic to interpret communities, as every character in the universe belongs to a certain race.

In addition, the use of named entities and semantic analysis of the text allowed researchers to determine not only the connection between the characters, but also the nature of these relationships — friendship, enmity or neutral relations. Artificial intelligence managed to identify complex social relationships between the characters and divide the characters into groups.

It is especially important that this approach is not limited only to The Lord of the Rings, but can be applied to any text, opening up new opportunities for automated research in literature.

‘Our study contains a sequence of steps that can be used to extract named entities and their relationships based on other texts. For example, to identify the relationship between the motives of works by different authors or to analyse complex legal documents,’ said Ilya Makarov.

See also:

HSE University to Reward Students Who Write Their Thesis Using AI

HSE University has launched a competition for solutions using artificial intelligence technology in theses work. The goal of the competition is to evaluate how students use tools based on generative models in their 2024 graduation theses (GT).

Production of the Future: AI Research Centre Presents Its Developments in Manual Operations Control Systems

Researchers from the HSE AI Research Centre have built a system for the automated control of manual operations, which finds application in industrial production. The system facilitates the process of monitoring objects and actions, as well as controlling the quality of their execution.

HSE and Yandex to Expand Collaboration in Training AI Specialists

Over the next ten years, the partnership between Yandex and the HSE Faculty of Computer Science (FCS) will broaden across three key areas: launching new educational programmes, advancing AI research, and exploring the application of generative neural networks in the educational process. Established by HSE University and Yandex a decade ago, the Faculty of Computer Science has since emerged as a frontrunner in training developers and experts in AI and machine learning, with a total of 3,385 graduates from the faculty over this period.

‘The Goal of the Spring into ML School Is to Unite Young Scientists Engaged in Mathematics of AI’

The AI and Digital Science Institute at the HSE Faculty of Computer Science and Innopolis University organised a week-long programme for students, doctoral students, and young scientists on the application of mathematics in machine learning and artificial intelligence. Fifty participants of Spring into ML attended 24 lectures on machine learning, took part in specific pitch sessions, and completed two mini-courses on diffusion models—a developing area of AI for data generation.

Researchers ‘Personalise’ the Selection of a Neural Network for Face Recognition on Smartphones

Researchers from HSE University in Nizhny Novgorod, MISIS and the Artificial Intelligence Research Institute (AIRI) have developed an algorithm that selects the best available neural network for facial recognition, taking into account the features of a mobile device. This new approach accelerates the selection of the most suitable neural network and allows the identification of people with an accuracy rate of up to 99%. The study was published in the IEEE Access journal. The source code is available on GitHub.

‘Bots Are Simply Imitators, not Artists’: How to Distinguish Artificial Intellect from a Real Author

Today, text bots like ChatGPT are doing many tasks that were originally human work. In our place, they can rewrite ‘War and Peace’ in a Shakespearean style, write a thesis on Ancient Mesopotamia, or create a Valentine’s Day card. But is there any way to identify an AI-generated text and distinguish it from works done by a human being? Can we catch out a robot? The Deputy Head of the HSE School of Data Analysis and Artificial Intelligence, Professor of the HSE Faculty of Computer Science Vasilii Gromov explained the answer in his lecture ‘Catch out a Bot, or the Large-Scale Structure of Natural Intelligence’ for Znanie intellectual society.

Neural Network Developed at HSE Campus in Perm Will Determine Root Cause of Stroke in Patients

Specialists at HSE Campus in Perm and clinicians at Perm City Clinical Hospital No. 4, have been collaborating to develop a neural network capable of determining the root cause of a stroke. This marks the world's first attempt to create such a system, the developers note.

AI Assists with Fact-Checking: HSE Scientists Streamline Information Verification

Specialists at the HSE AI Research Centre have developed an AI-powered fact-checking assistant. This software solution will improve the quality of working with information, reduce the risks of errors and biases, and save both time and resources. A notable advantage of the program lies in its capability to process a wide variety of statement types.

HSE University and Neimark IT Campus Sign an Agreement on Launching an AI Network Programme

HSE University, together with the world-class Neimark IT campus, is preparing a unique professional environment for future IT specialists: to this end, an IT school will be created in the Nizhny Novgorod region, and on September 1st, the first network degree programme ‘Artificial and Augmented Intelligence Technologies’ will be launched at HSE University in Nizhny Novgorod.

Russian Scientists Develop AI Algorithm for Faster Prediction of Earthquakes and Disease Outbreaks

Researchers at the HSE University AI Research Centre and Faculty of Computer Science have proposed a novel algorithm for detecting structural changes in time series. The method uses a neural network to compare various segments of a series, enabling rapid detection of changes in its behaviour. The results of their work have been presented at the 26th International Conference on Artificial Intelligence and Statistics— AISTATS (A*).