• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Математики из НИУ ВШЭ в Нижнем Новгороде решили задачу Пола Чернова, поставленную 57 лет назад

Математики из НИУ ВШЭ в Нижнем Новгороде решили задачу Пола Чернова, поставленную 57 лет назад

© Высшая школа экономики

В 1968 году американский математик Пол Чернов предложил теорему, позволяющую приближенно вычислять полугруппы операторов — сложные, но полезные математические конструкции, описывающие, как со временем изменяются состояния многочастичных систем. Метод основан на последовательности приближений — шагов, с каждым из которых результат становится точнее. Но до сих пор было неясно, насколько быстро эти шаги приводят к результату и что именно влияет на эту скорость. Полностью эту задачу впервые решили математики Олег Галкин и Иван Ремизов из нижегородского кампуса НИУ ВШЭ. Их работа открывает путь к более надежным вычислениям в разных областях науки. Результаты опубликованы в престижном журнале Israel Journal of Mathematics (Q1).

Во многих математических задачах и задачах теоретической физики необходимо точно вычислить сложные специфические значения — например, как быстро остывает чашка кофе, распространяется тепло в двигателе или как ведет себя квантовая частица. Исследования квантовых компьютеров и квантовых каналов передачи информации, случайных процессов и многих других важных для современной науки направлений требуют вычисления такого математического объекта, как полугруппа операторов. В основе таких вычислений лежит экспонента — одна из важнейших математических функций, выражаемая возведенным в степень числом е (примерно равным 2,718).

Однако в случае очень сложных систем, описываемых так называемыми неограниченными операторами, стандартные методы вычисления экспоненты (полугруппы операторов) перестают работать. В 1968 году американский математик Пол Чернов предложил элегантное решение этой проблемы — особый математический подход, известный сейчас как аппроксимации Чернова или черновские аппроксимации полугрупп операторов. Он позволял приближенно вычислять нужные значения экспоненты, последовательно строя все более точные математические конструкции.

Метод Чернова гарантировал, что последовательные приближения в итоге приведут к правильному ответу, но не показывал, с какой скоростью это произойдет. Проще говоря, было непонятно, сколько шагов необходимо, чтобы добиться нужной точности. Именно эта неопределенность мешала применять метод на практике.

Математики из нижегородского кампуса Высшей школы экономики Олег Галкин и Иван Ремизов решили эту задачу, над которой многие десятилетия бились ученые по всему миру. Им удалось получить общие оценки скорости сходимости, то есть описать, как быстро приближенные значения сходятся к точному результату в зависимости от выбранных параметров.

Иван Ремизов

«Эту ситуацию можно сравнить с кулинарным рецептом. Пол Чернов указал необходимые шаги, но не объяснил, как именно подобрать оптимальные ингредиенты — вспомогательные функции Чернова, обеспечивающие наилучший результат. Поэтому нельзя было точно предсказать, с какой скоростью будет готово блюдо. Мы доработали этот рецепт и определили, какие ингредиенты подходят лучше всего, чтобы сделать метод более быстрым и эффективным», — объясняет один из авторов исследования, старший научный сотрудник Добрушинской лаборатории Института проблем передачи информации им. А.А. Харкевича РАН и старший научный сотрудник Международной лаборатории динамических систем и приложений НИУ ВШЭ Иван Ремизов.

Галкин и Ремизов показали, что метод Чернова может работать значительно быстрее, если правильно выбрать вспомогательные функции Чернова. При удачном подборе таких функций приближение становится гораздо точнее уже на ранних этапах вычислений. Математики также доказали строгую теорему: если функция Чернова и приближаемая полугруппа имеют одинаковый многочлен Тейлора порядка k и при этом функция Чернова мало уклоняется от своего многочлена Тейлора, то разница между приближенным и точным значениями уменьшается как минимум пропорционально 1/n^k, где n — номер шага, а k — любое натуральное число, отражающее качество выбранных функций.

Олег Галкин

Если продолжать аналогию с рецептом, то ученым удалось не только уточнить, какие ингредиенты работают лучше всего, но и впервые точно оценить, насколько быстрее готовится блюдо, если использовать эти оптимальные продукты. А выведенная математиками формула по этой аналогии работает так: на каждом шаге приготовления результат становится точнее, а погрешность уменьшается пропорционально единице, деленной на n в степени k, где n обозначает номер шага в рецепте, а k зависит от качества выбранных ингредиентов. Чем выше k, тем быстрее доходит до готовности нужный результат.

Таким образом, отечественным математикам Олегу Галкину и Ивану Ремизову впервые удалось решить проблему, которая оставалась открытой более полувека. Полученный результат приносит ясность и открывает перспективы, а также позволяет поставить новые актуальные задачи, которые еще только предстоит решить. Хотя исследование носит теоретический характер, его значение выходит за рамки чистой математики. Такие результаты часто становятся основой для разработки новых численных методов в квантовой механике, теплопередаче, теории управления и других науках, где моделируются сложные процессы во времени.

Теорема Олега Галкина и Ивана Ремизова будет представлена онлайн 5 июля на Международной конференции «Теория функций и ее приложения». Запись выступления авторов и тезисы будут доступны на сайте конференции.

Работа выполнена при поддержке Программы фундаментальных исследований НИУ ВШЭ и Международной лаборатории динамических систем и приложений НИУ ВШЭ, грант Российского научного фонда №23-71-30008 «Диссипативная динамика бесконечномерных и конечномерных систем, разработка математических моделей механических, гидродинамических процессов».

Вам также может быть интересно:

В НИУ ВШЭ пройдет II конгресс «Генетика и сердце»

Высшая школа экономики, Национальная исследовательская лига кардиологической генетики (НИЛКГ) и Центральная государственная медицинская академия (ЦГМА) Управления делами Президента РФ организуют II Конгресс с международным участием «Генетика и сердце». Мероприятие состоится 7–8 февраля 2026 года в Центре культур НИУ ВШЭ.

Ученые ВШЭ выяснили, как сила авторитета формирует доверие

Исследователи Института когнитивных нейронаук НИУ ВШЭ выяснили, как мозг реагирует на аудиодипфейки — реалистичные поддельные записи речи, созданные с помощью ИИ. Выяснилось, что люди склонны доверять мнению авторитетного спикера даже в тех случаях, когда новые утверждения противоречат его прежней позиции. Это работает и в ситуациях, когда утверждение не согласуется с собственным мнением слушающего. Исследование опубликовано в журнале NeuroImage.

МИЭМ ВШЭ и Инновационный центр «Альфачип» заключили соглашение о сотрудничестве

Среди основных задач — совместные проекты в области микроэлектроники, участие специалистов компании в сопровождении научно-исследовательской деятельности студентов и аспирантов. Также планируется подготовка совместных научных публикаций, организация производственной практики и стажировок студентов, повышение квалификации специалистов компании.

«Я — профессионал»: ВШЭ — в лидерах по числу студентов в заключительном этапе

С сентября самые талантливые студенты со всей страны боролись за право стать частью вселенной карьерных возможностей «Я — профессионал» и получить доступ к бонусам при поступлении в магистратуру Высшей школы экономики, стажировкам в известных компаниях-партнерах («Яндекс», Сбербанк, ВТБ, РЖД и др.) и денежному вознаграждению до 300 000 рублей. Вышка вошла в число лидеров по количеству студентов, прошедших в заключительный этап олимпиады «Я — профессионал», который состоится с февраля по апрель 2026 года.

Математик из НИУ ВШЭ в Нижнем Новгороде нашел способ решить уравнение, нерешаемое с XIX века

Ученый из НИУ ВШЭ в Нижнем Новгороде и ИППИ РАН Иван Ремизов совершил концептуальный прорыв в теории дифференциальных уравнений. Ему удалось вывести универсальную формулу для решения задач, которые более 190 лет считались нерешаемыми аналитическим путем. Полученный результат радикально меняет картину мира в одной из старейших областей математики, важной для фундаментальной физики и экономики. Результаты работы опубликованы во Владикавказском математическом журнале.

НИУ ВШЭ и ГК InfoWatch подписали соглашение о сотрудничестве

Соглашение ознаменует новый этап сотрудничества между НИУ ВШЭ и ГК InfoWatch, который направлен на развитие образовательных программ и укрепление практико-ориентированного подхода в подготовке кадров для цифровой экономики. Стороны договорились совместно разрабатывать и проводить экспертизу учебных программ. Кроме того, эксперты ГК InfoWatch будут вести преподавательскую работу в рамках обучения студентов IT- и ИБ-направлений Высшей школы экономики.

В Вышке повысят квалификацию руководители, отвечающие за информационную безопасность

В НИУ ВШЭ стартовал набор на программу повышения квалификации «Кибербезопасность как стратегия», выпускники которой будут внедрять на своих предприятиях лучшие практики стратегического и операционного управления информационной безопасностью. Начало занятий запланировано на 16 марта. В чем актуальность программы, на кого она рассчитана и чему будут обучать слушателей, рассказал ее руководитель, директор Центра программных разработок и цифровых сервисов МИЭМ НИУ ВШЭ Антон Сергеев.

НИУ ВШЭ, MR и ГК «А101» будут готовить специалистов по территориальному развитию

В 2026 году на факультете городского и регионального развития (ФГРР) Вышки открывается новая образовательная программа бакалавриата «Девелопмент и городское планирование». Ключевые партнеры образовательной программы — компания MR и Группа компаний «А101».

МИЭМ ВШЭ проведет XXX, юбилейную межвузовскую конференцию имени Е.В. Арменского

20–27 апреля в Московском институте электроники и математики имени А.Н. Тихонова ВШЭ пройдет главное для МИЭМ научное студенческое событие года — юбилейная, XXX ежегодная межвузовская научно-техническая конференция студентов, аспирантов и молодых специалистов имени основателя и первого ректора МИЭМ Евгения Викториновича Арменского. В конференции могут принять участие студенты, аспиранты вузов и молодые специалисты, работающие в сфере электроники, в ИТ-области, телекоммуникациях, материаловедении. Отдельная секция конференции открыта для школьников.

Ученые ВШЭ разработали DeepGQ — Google Maps для G-квадруплексов

Исследователи из Центра искусственного интеллекта ФКН НИУ ВШЭ разработали ИИ-модель, которая открывает новые возможности для диагностики и лечения тяжелых заболеваний, включая рак мозга и нейродегенеративные нарушения. Ученые применили искусственный интеллект для изучения G-квадруплексов — структур, которые оказывают значительное влияние на работу наших клеток и развитие различных органов и тканей. Статья с результатами исследования опубликована в журнале Scientific Reports.