• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Фото: deepmind.com

В журнале Science, одном из самых авторитетных научных изданий, команда исследователей из Высшей школы экономики, Сколтеха, Института органической химии им. Н.Д. Зелинского и Kyungpook National University (Южная Корея) опубликовала комментарий к статье DeepMind, говорится на сайте Сколтеха. В нем ученые показали, что приведенные аргументы в пользу достижения поставленной DeepMind цели не настолько надежны, как кажется, и требуют дополнительного исследования.

Команда DeepMind в статье, опубликованной в журнале Science в декабре 2021 года, попыталась решить одну из ключевых проблем современной физики: создать метод теории функционала плотности (DFТ), корректно работающий для самых разных молекулярных систем, включая имеющие нецелое количество электронов.

Михаил Медведев

«Современные химия и наука о материалах постепенно переходят от экспериментального метода проб и ошибок к изучению цифровых двойников. Вместо того чтобы ставить десятки или даже сотни экспериментов в надежде найти новый эффективный катализатор или материал, для этого класса катализаторов/материалов создается цифровой двойник (математическая модель), который досконально изучается в компьютере, и на основании найденных теоретически закономерностей ставятся несколько прицельных экспериментов. Этот подход позволяет экономить килограммы дорогостоящих химических реагентов и тонны токсичных органических растворителей», — говорит руководитель Группы теоретической химии Института органической химии им. Н.Д. Зелинского РАН, доцент факультета химии НИУ ВШЭ Михаил Медведев.

Евгений Епифанов

Вместе с Михаилом Медведевым в группе исследователей над проблемой работал третьекурсник ОП «Химия» НИУ ВШЭ Евгений Епифанов. «Когда в начале 1-го курса мне пришлось определяться с лабораторией для научной работы, я хотел заниматься квантовой химией и решил выбрать группу теоретической химии ИОХ РАН, — рассказал он. — В этой группе есть разные направления работы, в целом можно описать их как предсказание возможности протекания реакций без проведения эксперимента. Я разрабатываю методы, чтобы такие расчеты были точнее. Здесь нужны не только знания химии, нужно еще уметь программировать. Но даже если не умеете, более опытные коллеги научат. Мне нравится этим заниматься, и я планирую писать диплом по этой теме».

Теория функционала плотности является самым широко используемым подходом для построения цифровых двойников в химии и науке о материалах. Она позволяет относительно корректно описать взаимодействие большого количества электронов между собой, что необходимо для построения цифровых двойников сложных химических систем: молекул, наночастиц, кристаллов. Основой теории функционала плотности является обменно-корреляционный функционал, для которого точный вид все еще не установлен, поэтому в настоящий момент для него используются различные приближенные выражения, которых уже более 400.

Петр Жиляев

«С каждым годом количество приближенных выражений для обменно-корреляционного функционала растет, предлагаются все более и более точные выражения. DeepMind, известные своей разработкой нейросетевой программы AlphaGo, победившей одного из сильнейших игроков мира в игру го, решили применить свои наработки в нейронных сетях для создания нейросетевого функционала теории функционала плотности. Их работа была далеко не первой, однако она однозначно является одной из самых амбициозных», — говорит старший научный сотрудник Центра технологий материалов Сколтеха Петр Жиляев.

DeepMind создали новый функционал теории функционала плотности — DM21. Предполагалось, что он будет способен корректно работать с системами, содержащими нецелое количество электронов: несмотря на отсутствие таких систем в природе, корректная работа функционала на них должна помочь ему в описании обычных химических систем. Для того чтобы научить свой функционал корректно работать на таких системах, команда DeepMind добавила их в базу данных, на которой обучался DM21. Чтобы убедиться, что DM21 научился работать на таких системах, авторы протестировали его на тестовом наборе BBB, состоящем из пар атомов на разных расстояниях друг от друга, например два атома водорода с одним электроном на двоих. DM21 показал превосходную точность на наборе BBB, обойдя стандартные функционалы, а также функционал DM21m, обученный DeepMind на том же датасете, за исключением систем с нецелым количеством электронов.

Авторы постарались обойти одно из ключевых ограничений традиционных функционалов — их неспособность корректно описывать системы с нецелым количеством электронов. DeepMind добавили в функционал новый нелокальный ингредиент (информацию о волновой функции системы, которую функционал может использовать для вычисления энергии), который ранее никогда не использовался, — пространственно разделенную локальную обменную энергию. В дальнейшем она может помочь строить функционалы с лучшим разделением между обменной и корреляционной энергиями.

Команда DeepMind ввела дополнительную регуляризацию, связанную с процедурой самосогласованного поля. Их дополнительное слагаемое в функции ошибки модели приближенно равно выражению для изменения энергии после шага вариационной процедуры минимизации, начинающегося с орбиталей традиционного функционала. Эта регуляризация позволяет сделать обучаемый функционал более стабильным.

«В машинном обучении очень важно не использовать для тестирования нейронной сети данные, на которых она была обучена. Однако в своей работе команда DeepMind допустила подобную ошибку: наиболее сложные димеры из набора BBB очень близки к системам с нецелым количеством электронов из обучающей выборки», — рассуждает инженер-исследователь Центра технологий материалов Сколтеха Александр Рябов.

«Если нейронные сети не могут понять, как прийти к правильным ответам, они пытаются их зазубрить. Поэтому не столь сложно обучить нейронную сеть — сложно показать, что она действительно осознала физические законы, лежащие в основе вопроса, на который она отвечает. Так что тестировать нейронную сеть на данных, на которых она обучалась, — это все равно что дать студенту на экзамене ту же задачу, которая разбиралась пять минут назад на доске: мы узнаем, хорошая ли у него память, но вряд ли узнаем, понимает ли он предмет», — отмечает Михаил Медведев.

Этот недостаток не был очевидным. Системы в наборе BBB состоят из двух атомов, тогда как DM21 обучался на одноатомных системах с нецелым количеством электронов. Поэтому предвидеть то, что произошло, было очень непросто. Ученые поняли, что при расстояниях между атомами в тест-сете BBB, где обычные функционалы начинают испытывать проблемы, атомы уже практически не взаимодействуют между собой и каждый атом в отдельности по сути становится тем самым «атомом с нецелым числом электронов», на которых проводилось обучение.

Читать материал в источнике

Вам также может быть интересно:

Российские ученые научили искусственный интеллект анализировать эмоции участников онлайн-мероприятий

Исследователи НИУ ВШЭ предложили новый нейросетевой метод распознавания эмоций и вовлеченности людей. Алгоритмы строятся на основе анализа видеоизображений лиц и превосходят по точности известные аналоги. Разработанные модели подходят для малопроизводительного оборудования, в том числе для мобильных устройств. Результаты работы могут быть внедрены в системы теле-конференц-связи и онлайн-обучения для анализа вовлеченности и эмоций участников. Итоги исследования опубликованы в IEEE Transactions on Affective Computing.

Искусственный интеллект распознает изображения хуже человека

У компьютерного зрения нет тех физиологических особенностей, которые есть у человека, поэтому оно хуже распознает изображения. К такому выводу пришли ученые из ВШЭ и Московского политехнического университета. Результаты исследования опубликованы в сборнике Proceedings of Seventh International Congress on Information and Communication Technology.

Искусственный интеллект обнаружил новые космические аномалии

Международная команда проекта SNAD, куда входит доцент факультета физики НИУ ВШЭ Матвей Корнилов, обнаружила 11 аномалий, 7 из которых — кандидаты в сверхновые. Исследования проводились на цифровых снимках северного неба за 2018 год, для поиска использовался метод ближайших соседей на основе K-мерных деревьев. Автоматизировать поиск аномалий позволили методы машинного обучения. Исследование опубликовано в журнале New Astronomy.

От искусственного интеллекта до культуры отмены: эксперты ВШЭ обсудили правовые вопросы на ПМЮФ

Эксперты Высшей школы экономики приняли участие в дискуссиях состоявшегося на днях X Петербургского международного юридического форума (ПМЮФ). Представители НИУ ВШЭ обсудили вопросы юридического образования, правового регулирования в сфере искусственного интеллекта, а также рассказали о феномене культуры отмены.

НИУ ВШЭ и АГУ договорились о сотрудничестве в сфере ИИ

Ректор Высшей школы экономики Никита Анисимов подписал соглашение о сотрудничестве в научно-исследовательской и образовательной сфере с ректором Адыгейского государственного университета (АГУ) Даудом Мамием. Стороны договорились участвовать в проектах Центра искусственного интеллекта НИУ ВШЭ, направленных на разработку новых технологий в этой сфере.

От беспилотников до диагностики дислексии у детей: чем занимается Центр ИИ Вышки

Центр искусственного интеллекта НИУ ВШЭ вместе с индустриальными партнерами ведет работу над 25 прикладными проектами в сфере телекоммуникаций, финансов, образования, медицины и др. Результаты работы исследователей и разработчиков на днях были представлены на заседании рабочей группы при правительстве РФ, где были подведены первые итоги реализации федерального проекта «Искусственный интеллект» национальной программы «Цифровая экономика».

Технологии искусственного интеллекта помогут реабилитации бездомных

Исследовательская группа Центра искусственного интеллекта ФКН НИУ ВШЭ под руководством Ивана Ямщикова разработала модель для прогнозирования успешности  реабилитации бездомных. Модель с вероятностью около 80% предсказывает эффективность  работы с клиентами организаций для бездомных. Проект представлен на конференции, посвященной деятельности социальных центров.

Разработки ученых НИУ ВШЭ в области медицинских нейроинтерфейсов будут внедрены в клиническую практику

В Федеральном центре мозга и нейротехнологий Федерального медико-биологического агентства начинает работу Лаборатория медицинских нейроинтерфейсов и искусственного интеллекта для клинических приложений, созданная штатными сотрудниками Высшей школы экономики. Рассказываем, чем она будет заниматься и каких результатов планирует достичь.

«Приятно думать, что найденные решения в перспективе могут помогать людям»

В Университете Иннополис подвели итоги международного отраслевого онлайн-хакатона Global Al Challenge. В нем соревновались команды разработчиков в области создания новых материалов с применением искусственного интеллекта. Третье место заняла команда DrugANNs, в числе участников которой — студенты факультета компьютерных наук НИУ ВШЭ.

Магистратура «Финансовые технологии и анализ данных» ВШЭ прошла аккредитацию Альянса в сфере искусственного интеллекта

Образовательная программа ФТиАД факультета компьютерных наук НИУ ВШЭ получила профессионально-общественную аккредитацию Альянса в сфере искусственного интеллекта (Альянс ИИ). Это показывает высокий уровень программы с точки зрения актуальности изучаемых дисциплин и состава преподавателей, отмечает академический руководитель магистратуры Алексей Масютин.