• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Фото: deepmind.com

В журнале Science, одном из самых авторитетных научных изданий, команда исследователей из Высшей школы экономики, Сколтеха, Института органической химии им. Н.Д. Зелинского и Kyungpook National University (Южная Корея) опубликовала комментарий к статье DeepMind, говорится на сайте Сколтеха. В нем ученые показали, что приведенные аргументы в пользу достижения поставленной DeepMind цели не настолько надежны, как кажется, и требуют дополнительного исследования.

Команда DeepMind в статье, опубликованной в журнале Science в декабре 2021 года, попыталась решить одну из ключевых проблем современной физики: создать метод теории функционала плотности (DFТ), корректно работающий для самых разных молекулярных систем, включая имеющие нецелое количество электронов.

Михаил Медведев

«Современные химия и наука о материалах постепенно переходят от экспериментального метода проб и ошибок к изучению цифровых двойников. Вместо того чтобы ставить десятки или даже сотни экспериментов в надежде найти новый эффективный катализатор или материал, для этого класса катализаторов/материалов создается цифровой двойник (математическая модель), который досконально изучается в компьютере, и на основании найденных теоретически закономерностей ставятся несколько прицельных экспериментов. Этот подход позволяет экономить килограммы дорогостоящих химических реагентов и тонны токсичных органических растворителей», — говорит руководитель Группы теоретической химии Института органической химии им. Н.Д. Зелинского РАН, доцент факультета химии НИУ ВШЭ Михаил Медведев.

Евгений Епифанов

Вместе с Михаилом Медведевым в группе исследователей над проблемой работал третьекурсник ОП «Химия» НИУ ВШЭ Евгений Епифанов. «Когда в начале 1-го курса мне пришлось определяться с лабораторией для научной работы, я хотел заниматься квантовой химией и решил выбрать группу теоретической химии ИОХ РАН, — рассказал он. — В этой группе есть разные направления работы, в целом можно описать их как предсказание возможности протекания реакций без проведения эксперимента. Я разрабатываю методы, чтобы такие расчеты были точнее. Здесь нужны не только знания химии, нужно еще уметь программировать. Но даже если не умеете, более опытные коллеги научат. Мне нравится этим заниматься, и я планирую писать диплом по этой теме».

Теория функционала плотности является самым широко используемым подходом для построения цифровых двойников в химии и науке о материалах. Она позволяет относительно корректно описать взаимодействие большого количества электронов между собой, что необходимо для построения цифровых двойников сложных химических систем: молекул, наночастиц, кристаллов. Основой теории функционала плотности является обменно-корреляционный функционал, для которого точный вид все еще не установлен, поэтому в настоящий момент для него используются различные приближенные выражения, которых уже более 400.

Петр Жиляев

«С каждым годом количество приближенных выражений для обменно-корреляционного функционала растет, предлагаются все более и более точные выражения. DeepMind, известные своей разработкой нейросетевой программы AlphaGo, победившей одного из сильнейших игроков мира в игру го, решили применить свои наработки в нейронных сетях для создания нейросетевого функционала теории функционала плотности. Их работа была далеко не первой, однако она однозначно является одной из самых амбициозных», — говорит старший научный сотрудник Центра технологий материалов Сколтеха Петр Жиляев.

DeepMind создали новый функционал теории функционала плотности — DM21. Предполагалось, что он будет способен корректно работать с системами, содержащими нецелое количество электронов: несмотря на отсутствие таких систем в природе, корректная работа функционала на них должна помочь ему в описании обычных химических систем. Для того чтобы научить свой функционал корректно работать на таких системах, команда DeepMind добавила их в базу данных, на которой обучался DM21. Чтобы убедиться, что DM21 научился работать на таких системах, авторы протестировали его на тестовом наборе BBB, состоящем из пар атомов на разных расстояниях друг от друга, например два атома водорода с одним электроном на двоих. DM21 показал превосходную точность на наборе BBB, обойдя стандартные функционалы, а также функционал DM21m, обученный DeepMind на том же датасете, за исключением систем с нецелым количеством электронов.

Авторы постарались обойти одно из ключевых ограничений традиционных функционалов — их неспособность корректно описывать системы с нецелым количеством электронов. DeepMind добавили в функционал новый нелокальный ингредиент (информацию о волновой функции системы, которую функционал может использовать для вычисления энергии), который ранее никогда не использовался, — пространственно разделенную локальную обменную энергию. В дальнейшем она может помочь строить функционалы с лучшим разделением между обменной и корреляционной энергиями.

Команда DeepMind ввела дополнительную регуляризацию, связанную с процедурой самосогласованного поля. Их дополнительное слагаемое в функции ошибки модели приближенно равно выражению для изменения энергии после шага вариационной процедуры минимизации, начинающегося с орбиталей традиционного функционала. Эта регуляризация позволяет сделать обучаемый функционал более стабильным.

«В машинном обучении очень важно не использовать для тестирования нейронной сети данные, на которых она была обучена. Однако в своей работе команда DeepMind допустила подобную ошибку: наиболее сложные димеры из набора BBB очень близки к системам с нецелым количеством электронов из обучающей выборки», — рассуждает инженер-исследователь Центра технологий материалов Сколтеха Александр Рябов.

«Если нейронные сети не могут понять, как прийти к правильным ответам, они пытаются их зазубрить. Поэтому не столь сложно обучить нейронную сеть — сложно показать, что она действительно осознала физические законы, лежащие в основе вопроса, на который она отвечает. Так что тестировать нейронную сеть на данных, на которых она обучалась, — это все равно что дать студенту на экзамене ту же задачу, которая разбиралась пять минут назад на доске: мы узнаем, хорошая ли у него память, но вряд ли узнаем, понимает ли он предмет», — отмечает Михаил Медведев.

Этот недостаток не был очевидным. Системы в наборе BBB состоят из двух атомов, тогда как DM21 обучался на одноатомных системах с нецелым количеством электронов. Поэтому предвидеть то, что произошло, было очень непросто. Ученые поняли, что при расстояниях между атомами в тест-сете BBB, где обычные функционалы начинают испытывать проблемы, атомы уже практически не взаимодействуют между собой и каждый атом в отдельности по сути становится тем самым «атомом с нецелым числом электронов», на которых проводилось обучение.

Читать материал в источнике

Вам также может быть интересно:

Fall into ML 2023: ФКН НИУ ВШЭ организует конференцию по машинному обучению

26–28 октября Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ при поддержке Центра ИИ НИУ ВШЭ проводит конференцию Fall into ML 2023. Мероприятие посвящено перспективным направлениям развития фундаментального искусственного интеллекта.

«Нейросеть — явление, которое двигает мир вперед»

4 сентября в НИУ ВШЭ на Покровке состоялся фестиваль нейросетевого искусства ARTificial Fest. Его организаторами выступили факультет креативных индустрий ВШЭ, HSE Career и студенческая организация «Чистый лист». Посетить праздник смогли не только студенты и сотрудники Вышки, но и все интересующиеся слиянием машинных алгоритмов с искусством.

ФКН и Центр ИИ приглашают принять участие в соревновании по бинаризации нейросетей Binary Super Resolution Challenge

С 18 июля по 15 октября факультет компьютерных наук и Центр ИИ НИУ ВШЭ приглашают принять участие в онлайн-соревновании Binary Super Resolution Challenge (BSRC-2023). 50 лучших команд получат призы, а три лидера — денежное вознаграждение.

В России разработали программное обеспечение для предсказания расположения элементов генома человека

В Центре искусственного интеллекта НИУ ВШЭ создали программное обеспечение для предсказания расположения элементов генома человека. Ученые использовали методы глубинного обучения на основе омиксных данных о различных молекулярных компонентах организма. Исследование выполнено в соответствии с задачами федерального проекта «Искусственный интеллект» национального проекта «Цифровая экономика».

В технопарке «Саров» сотрудники ФКН Вышки рассказали о применении ИИ для анализа данных в физике

Научно-учебная лаборатория методов анализа больших данных факультета компьютерных наук ВШЭ совместно с Всероссийским научно-исследовательским институтом экспериментальной физики (РФЯЦ-ВНИИЭФ, Саров) и Национальным центром физики и математики провели II Всероссийскую школу-семинар по физике высоких энергий и ускорительной технике.

Ученые пермского кампуса НИУ ВШЭ получили первый патент в сфере искусственного интеллекта

Научный сотрудник НУЛ МЭИ Алексей Кычкин и стажер-исследователь НУЛ МЭИ Олег Горшков получили патент на систему прогнозирования пространственного распределения вредных веществ в атмосферном воздухе с использованием блока искусственного интеллекта. Изобретение может быть использовано для комплексного планирования и уведомления о рисках загрязнений атмосферного воздуха вредными веществами. Работы были выполнены в рамках гранта Центра искусственного интеллекта НИУ ВШЭ.

В Инженерно-математической школе VK и НИУ ВШЭ открылся новый магистерский трек по ИИ

Инженерно-математическая школа VK и НИУ ВШЭ запускает новый магистерский трек «Аппаратно-программные комплексы искусственного интеллекта». Он станет частью магистерской программы «Интернет вещей и киберфизические системы». Обучение будут вести эксперты VK и сотрудники Вышки.

«На рынке data science всегда было мало людей, и потребность в них с каждым годом увеличивается»

Сегодня хорошие программисты требуются везде. Но особенно сильно в них нуждается промышленный сектор. О том, что такое промышленное программирование и для чего IT-специалисты нужны на производствах, рассказал Алексей Шпильман, заведующий центром анализа данных и машинного обучения НИУ ВШЭ в Санкт-Петербурге и руководитель программ искусственного интеллекта в «Газпром нефти».

«Мы создаем искусственный интеллект, и искусственный интеллект создает нас»

29 и 30 июня факультет компьютерных наук Вышки организует конференцию «Искусственный интеллект и общество», которая состоится в главном корпусе университета на Покровском бульваре. Также возможно подключение онлайн. Участники форума обсудят, в каких направлениях развивается ИИ и как человеку справиться со связанными с этим вопросами.

Создание будущего: ВШЭ и Сбер провели R&D-день по искусственному интеллекту

НИУ ВШЭ и Сбер организовали R&D-день (Research and Development), посвященный сотрудничеству в сфере разработки технологий искусственного интеллекта и промежуточным результатам работы университетского Исследовательского центра ИИ по проектам для Сбера. Участники встречи представили свои разработки, обсудили будущие совместные проекты и перспективы расширения взаимодействия университета и банка, а также то, как решить проблему «дефицита мозгов и железа».