• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

CERN Workshop at the HSE Faculty of Computer Science

Thirty school students from Moscow and the Moscow Region recently had an opportunity to meet international researchers and analyze data obtained from the Large Hadron Collider at a workshop organized by HSE’s Faculty of Computer Science, Yandex and CERN.

To CERN via HSE

CERN workshops for school students have been held for several years in many countries. In 2017, Russian school children joined the project with the support of the HSE Faculty of Computer Science and Saint Petersburg State University.

Denis Derkach and Fedor Ratnikov, Senior Research Fellows at the HSE Laboratory of Methods for Big Data Analysis, oversaw the organization of the event. This particular laboratory focuses on applying the latest methods in data analysis to high energy physics. The lab’s staff also conducts research in other areas, such as the application of machine learning technologies and neuroscience.

‘CERN workshops for school students are great in that they allow prospective students interested in science and technology to choose their future specialization and career path knowingly,’ says Ivan Arzhantsev, Dean of the HSE Faculty of Computer Science. He adds: ‘since the start of the 20th century, scientific study has been largely focused on large projects that were historically associated with physics. At this workshop, students learned about the direct connection between two large projects — an experiment conducted at CERN, and modern data analysis. The second project is not limited to a particular accelerator. In fact, it has been developed at many research centres and IT companies, and this project has significantly affected our lives in recent years.’

Denis Derkach worked as a research fellow at CERN before coming to the HSE Faculty of Computer Science, while Fedor Ratnikov has been involved in CERN research projects for more than 12 years. Therefore, students were able to learn details about the Large Hadron Collider first hand. ‘Our laboratory is engaged in several joint projects with CERN member universities,’ explains Denis Derkach. He notes: ‘We work with the universities of Rome, Cambridge, MIT and many others. The tasks that we solve require in-depth knowledge of both particle physics and Big Data analysis methods. The solutions offered at our laboratory are already quite suitable for online selection of interesting events in experiments with the Large Hadron Collider. We are now working on automation systems to monitor and evaluate the quality of the data generated. Moreover, the project is based on the application of techniques developed by our lab’s doctoral students.’

Why Work with Big Data

The CERN workshop was comprised of lectures on physics research conducted through the Large Hadron Collider, data analysis, and laboratory tests of collider data. It also included a teleconference with students from other countries (Italy, France and Brazil) and CERN researchers Francesca Dordei and Eduardo Rodriguez.

According to the organizers, there are no serious criteria for student selection. Instead, the main criterion is keen interest, ‘as this is the key factor in the development of science and technology.’ ‘Commenting about preparation, the lecture for senior students requires thorough elaboration of the material,’ says Denis Derkach. ‘Young people, who come to these events, are already prepared and can pose interesting questions. We also should not forget that, in just a few hours, we have to cover several semesters’ worth of physics studies,’ he notes. Students from several lyceums in Moscow and the Moscow Region attended the event along with their teachers.

The Dual Importance of Mistakes and Findings

The event’s activities, as noted by the students themselves, included two parts. During the first part, the participants were asked to visually analyze 30 real events (i.e., recorded results of proton-proton collisions in the collider) and identify the products of a D^0 meson collapse. The students learned about D^0 mesons at introductory lectures. During the second part, the students measured the D^0 meson lifetime. All students were provided with the same data, which, in turn, enabled them to make special selections in order to reduce the background contribution while also increasing the signal significance. From the approximation of the collapse-time distribution, everyone was able to obtain a result describing the lifetime. A similar measurement conducted during an LHCb experiment in 2011 has improved our understanding of the first seconds of the universe’s development and the absence of anti-matter in the world around us.

The results of the first part of the work of all students (from Russia and three other countries) were brought together, thereby allowing researchers to obtain a good statistical signal for the D^0 meson. ‘This section should help students understand that, by combining the efforts of many participants from various countries, it is possible to ensure a significant improvement of the results. And this is the essence of any international research collaboration,’ says Fedor Ratnikov.

The second part demonstrated to students that the same data may generate different results that are internally consistent, but nonetheless display varying accuracy depending on the preferred processing method. Therefore, a given result is not so much a mechanical procedure, but a process of intense intellectual activity, tests, mistakes and findings.

See also:

HSE and Yandex to Expand Collaboration in Training AI Specialists

Over the next ten years, the partnership between Yandex and the HSE Faculty of Computer Science (FCS) will broaden across three key areas: launching new educational programmes, advancing AI research, and exploring the application of generative neural networks in the educational process. Established by HSE University and Yandex a decade ago, the Faculty of Computer Science has since emerged as a frontrunner in training developers and experts in AI and machine learning, with a total of 3,385 graduates from the faculty over this period.

Russian Scientists Pioneer Accurate Mathematical Description of Quantum Dicke Battery

Physicists at HSE University and NUST MISIS have formulated and solved equations for a quantum battery, a device capable of storing energy in the form of light. Their findings will facilitate precise calculations of the capacity, power, and duration required for optimal battery charging. Quantum batteries are expected to improve the performance of solar panels and electric vehicles, while also opening up new avenues for efficient energy transfer. The study has been published in Physical Review A.

Scientists Harness 'Liquid Light' to Induce Electric Current in Superconductors

Scientists at HSE MIEM have induced a superconducting current using 'liquid light,' or excitonic polaritons, which are hybrid particles formed by interaction between light and matter and possess the properties of both light and material particles. The ability to manipulate an electrical system through an optical one can be valuable in the development of technologies such as quantum computers. The study has been published in Physical Review B.

Physicists Explain Transition Between Different Types of Superconductivity

Physicists from HSE MIEM in collaboration with colleagues from MIPT and other universities have formulated a theory capable of explaining the transition between different superconductivity types, revealing an intertype regime characterised by exotic magnetic properties. This discovery can serve as the foundation for the development of sensors with enhanced sensitivity and accuracy, capable of functioning in conditions where traditional sensors are less effective. The study has been published in Communications Physics.

'Unconventional Thinking Can Be Cultivated through Competitions Like Physics Tournaments'

Last week, university students from all over the country came to HSE University for the All-Russian Student's Tournament of Physicists. The tournament took the form of battles in which teams tackled physics problems while taking turns in the roles of speakers, opponents, and reviewers. Based on the competition results, the combined team 'Volume Dependence' emerged as the winner and will participate in the upcoming international tournament in Zurich.

HSE University to Host All-Russian Student's Tournament of Physicists for the First Time

The All-Russian Student's Tournament of Physicists is a competition in which teams of students from different universities offer their solutions to problems and defend them before rival teams. The HSE University Faculty of Physics traditionally participates in the organisation of the competition and task development. This year, on February 13–17, the tournament will be held at HSE University for the first time. It will include two rounds—the qualifiers and the final. In the final round, three teams and their captains will compete with each other.

Lavsan and Kapton Tested Under Space-like Radiation Conditions

In a ground-breaking experiment, HSE MIEM researchers subjected Lavsan (polyethylene terepfthalate, polyester) and Kapton (polypiromellitimide, polyimide) polymers, commonly used in space technology, to ionising radiation for durations ranging from microseconds to several hours at temperatures of -170°C and +20°C, while comparing their electrical conductivity under extreme conditions. The study reveals that at -170°C, Kapton's conductivity is ten times lower than at +20°C. These findings can assist engineers in developing more effective protection for spacecraft against static discharges induced by ionising radiation. The study has been published in Journal of Applied Physics.

Human Bodies Impede 6G Signal Transmission

A team of researchers, including scientists from HSE University, have investigated the influence of human movement on the propagation of 6G signals. Within a range of up to 10 metres, the signal attenuation is comparatively minor, yet brief connection failures may still occur. Based on the study findings, a blockage detection algorithm has been developed to account for both signal attenuation and interruptions. The gaming industry is likely to derive the greatest benefits from this discovery. A paper with the study findings has been published in Computer Communications.

Two HSE Researchers Receive Yandex ML Prize

Two researchers from the HSE Faculty of Computer Science—Aibek Alanov, Junior Research Fellowat the Centre of Deep Learning and Bayesian Methods, Research Fellow at AIRI; and Pavel Braslavski, Associate Professor, Senior Research Fellow at the Laboratory for Models and Methods of Computational Pragmatics—are among the winners of the 2023Yandex ML Prize (formerly the Ilya Segalovich Award).

Microlasers with Quantum Dots Remain Functional at Elevated Temperatures

Researchers from the HSE International Laboratory of Quantum Optoelectronics in St Petersburg have explored the impact of resonator size on the operating temperature of a microdisk laser with quantum dots in a two-level generation mode. Their findings reveal that microlasers can produce radiation across multiple frequencies, even under elevated temperatures. In the future, this breakthrough will enable the integration of microlasers into photonic circuits, potentially doubling information transmission capabilities. The study findings have been published in Nanomaterials.