New Master’s Programme in Quantum Information Technologies Opening at HSE MIEM
Konstantin Arutyunov, Professor at the School of Electronic Engineering of HSE Tikhonov Moscow Institute of Electronics and Mathematics, discusses what the new programme offers its students and why the future lies with quantum technologies.
When Classical Physics Doesn’t Work
The devices that allow information to be transferred, stored, and processed require constant upgrades and improvements, but this process has its limitations. Some of these restrictions can be overcome using certain tricks, such as multiplexing and parallel signal processing. But all of the world’s top experts in the field of micro- and nanotechnologies are of the opinion that very soon – according to certain forecasts, in 2017-2018 – it will no longer be possible to further increase the level of integration of commercial nanoelectronics.
One of the reasons for this is more fundamental. When certain sizes are achieved, the current flow in subminiature components no longer follows the laws of classical physics, and the qualitatively newer quantum phenomena that break the device’s normal working mode start to play a role. A typical example of such quantum phenomena is the decrease in electrical conductivity before being moved to an insulating state. But the same ‘quantum’ characteristics can be used to develop qualitatively new principles for electronic systems – for example, to build new-generation quantum logical elements like qubits, which are based on information transfer, processing, and storage principles that are qualitatively different from classical principles.
Quantum information science is a newer discipline that is growing rapidly. This affects both the number of specialists capable of teaching it, as well as the level of preparation students are able to achieve in undergrad. But we have found a solution to these problems
The basis of such devices is formed by the laws of quantum physics, laws that open up completely new opportunities in fields such as information science, telecommunications, metrology, and computer engineering. Quantum information technology also opens up new horizons for fundamental research in a wide array of disciplines that until recently were considered to have nothing in common with one another – linguistics and quantum cryptography and neurosurgery and quantum informatics.
Our students will gain the knowledge and skills needed to conduct this kind of research. In addition, we have intentionally made this an English-taught programme, as this is the language that the natural sciences and engineering sciences ‘speak.’ Our graduates will be able to fully carry on professional conversations and scientific discussions as they present the results of their work to their colleagues all over the world.
How Learning Takes Place
The programme includes core classes and electives covering fields such as micro- and nanoelectronics, quantum mechanics, photonics, metamaterials, superconductivity, information networks and systems, and more. Particular attention will be paid to applied math, which students need in order to use specialised mathematics devices.
Quantum information science is a newer discipline that is growing rapidly. This affects both the number of specialists capable of teaching it, as well as the level of preparation students are able to achieve in undergrad. But we have found a solution to these problems. On the one hand, we have come up with a set of introductory courses that allow students who completed a basic undergraduate programme to effectively prepare for more complex, specialised disciplines. On the other hand, invited lecturers, who are leaders and top researchers in their fields, teach the specialised courses.
A significant portion of the programme consists of practicums connected with the technology used to prepare and microscopically analyse nano-sized systems. These classes will take place in the laboratories of the joint faculties and HSE MIEM’s partner research organisations.
Our ‘ideal applicant’ is someone with a bachelor’s degree in the natural sciences who has taken core courses in physics and higher mathematics. In addition, they should be motivated to learn from not only the thick textbooks that still don’t really exist in our discipline, but also first-hand from world-renowned specialists in the field
Our students will have access to the resources and equipment of the Quantum Optics and Telecommunications Joint Department with Skontel, the All-Russian Research Institute for Optical and Physical Measurements joint department, the Research Institute of Communication and Control Systems (NIISSU), the Rocket and Space Corporation Energia, and the laboratories of the Kapitza Institute for Physical Problems.
What Kind of Students Should Apply
We were happy to see radio and computer hardware engineers and designers; engineers from the radio-electronic systems, information technology, and security systems services; and specialists from laboratories in the fields of nanotechnology, cryptography, metrology and informatics.
But overall, our ‘ideal applicant’ is someone with a bachelor’s degree in the natural sciences who has taken core courses in physics and higher mathematics. In addition, they should be motivated to learn from not only the thick textbooks that still don’t really exist in our discipline, but also first-hand from world-renowned specialists in the field.
We also hope that the programme appeals to international students as well. We are confident in our ability to offer students from all over the world – the CIS, Far East, India, and Southern and Eastern Europe – a top-notch education at a competitive price. After studying here, it is certain that they will be able to find a job at an international company.
What Happens After the Master’s Programme
The trajectory of the Quantum Information Technologies master’s programme will allow graduates to find work at a broad array of research organisations, including the academic institutes of the Russian Academy of Sciences, the international research centres CERN and EASA, and national research organisations such as CNRS (France) or DFG (Germany). And, of course, we would love for our master’s students to stick around the Higher School of Economics for a while longer to go on into a PhD programme.
But our students will also be able to embark on a professional career trajectory as well. Their knowledge and skills will be sought after by research and design organisations in Russia’s defence, aerospace, radio-electronic, and nuclear industries, as well as by large international companies working on information technologies, D-Wave Systems and Google being just two examples.
See also:
HSE Scientist Optimises Solution of Hydrodynamics Problems
Roman Gaydukov, Associate Professor at the MIEM HSE School of Applied Mathematics, has modelled the fluid flow around a rotating disk with small surface irregularities. His solution allows for predicting fluid flow behaviour without the need for powerful supercomputers. The results have been published in Russian Journal of Mathematical Physics.
Physicists from Russia and Brazil Unveil Mystery behind Complex Superconductor Patterns
Scientists at HSE MIEM and MIPT have demonstrated that highly complex spatial structures, similar to the intricate patterns found in nature, can emerge in superconductors. Mathematically, these patterns are described using the Ginzburg–Landau equation at a specific combination of parameters known as the Bogomolny point. The paper has been published in the Journal of Physics: Condensed Matter.
Adhesive Tape Helps Create Innovative THz Photodetector
An international team of researchers, including scientists at HSE University and Moscow Pedagogical State University (MPGU), has developed a novel photodetector composed of a thin superconducting film, capable of detecting weak terahertz (THz) radiation. This discovery holds promise for studying objects in space, developing wireless broadband communication systems, and making advancements in spectroscopy. The study has been published in Nano Letters.
Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish
Scientists at the HSE Laboratory for Computational Physics have developed a new model for analysing communication networks that can significantly enhance the speed of mobile communications. To achieve this, the researchers used computational physics methods and phase transition models. It turns out that the functioning of cellular networks is in many ways similar to the growth of surfaces in physics. The study was performed using the HPC cHARISMa cluster at HSE University. The study findings have been published in Frontiers in Physics.
The Saudi Arabian National Team, Medal Winners at the International Physics Olympiad, Trained at HSE University
At the recent International Physics Olympiad (IPhO 2024) in Iran, students from Saudi Arabia achieved the best results in their country's history, winning one silver and three bronze medals. The team from the Kingdom made their first visit to Russia to receive their final training at the HSE Faculty of Physics.
'I've Always Been Keen to Engage in Experiments and Operate Scientific Instruments'
During his early years at university, physicist Ivan Makhov worried that he might be dismissed, but today he is heading a study supported by a grant from the Russian Science Foundation. In this interview with the HSE Young Scientists project, he shares his work experience using a closed-loop cryostat, his dream of conversing with Einstein, and favourite location in his hometown of St Petersburg.
‘Two Interdisciplinary Research Centres Can Create New Synergy between Themselves’
In mid-June 2024, HSE University and the Joint Institute for Nuclear Research in Dubna held a joint working meeting. This meeting was the first under an agreement signed by the research centres in 2024, when HSE University and JINR agreed to jointly participate in experiments of the NICA megascience project, as well as interact in the field of theoretical and mathematical physics, information technology, and personnel training. These issues were the focus of the first working meeting. Details are in the JINR report.
‘I Aspire to Make a Contribution Comparable to Prometheus' Gift to Humanity'
Egor Sedov initially planned to pursue a career in programming but instead became captivated by experimental physics. In this interview with the HSE Young Scientists project, he spoke about the quantum effect and the quantum standard, a scientist's letter from the future, and the magnetic levitation of a frog.
Russian Scientists Pioneer Accurate Mathematical Description of Quantum Dicke Battery
Physicists at HSE University and NUST MISIS have formulated and solved equations for a quantum battery, a device capable of storing energy in the form of light. Their findings will facilitate precise calculations of the capacity, power, and duration required for optimal battery charging. Quantum batteries are expected to improve the performance of solar panels and electric vehicles, while also opening up new avenues for efficient energy transfer. The study has been published in Physical Review A.
Scientists Harness 'Liquid Light' to Induce Electric Current in Superconductors
Scientists at HSE MIEM have induced a superconducting current using 'liquid light,' or excitonic polaritons, which are hybrid particles formed by interaction between light and matter and possess the properties of both light and material particles. The ability to manipulate an electrical system through an optical one can be valuable in the development of technologies such as quantum computers. The study has been published in Physical Review B.