• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

New Master’s Programme in Quantum Information Technologies Opening at HSE MIEM

Konstantin Arutyunov, Professor at the School of Electronic Engineering of HSE Tikhonov Moscow Institute of Electronics and Mathematics, discusses what the new programme offers its students and why the future lies with quantum technologies.

When Classical Physics Doesn’t Work

The devices that allow information to be transferred, stored, and processed require constant upgrades and improvements, but this process has its limitations. Some of these restrictions can be overcome using certain tricks, such as multiplexing and parallel signal processing. But all of the world’s top experts in the field of micro- and nanotechnologies are of the opinion that very soon – according to certain forecasts, in 2017-2018 – it will no longer be possible to further increase the level of integration of commercial nanoelectronics.

One of the reasons for this is more fundamental. When certain sizes are achieved, the current flow in subminiature components no longer follows the laws of classical physics, and the qualitatively newer quantum phenomena that break the device’s normal working mode start to play a role. A typical example of such quantum phenomena is the decrease in electrical conductivity before being moved to an insulating state. But the same ‘quantum’ characteristics can be used to develop qualitatively new principles for electronic systems – for example, to build new-generation quantum logical elements like qubits, which are based on information transfer, processing, and storage principles that are qualitatively different from classical principles.

Quantum information science is a newer discipline that is growing rapidly. This affects both the number of specialists capable of teaching it, as well as the level of preparation students are able to achieve in undergrad. But we have found a solution to these problems

The basis of such devices is formed by the laws of quantum physics, laws that open up completely new opportunities in fields such as information science, telecommunications, metrology, and computer engineering. Quantum information technology also opens up new horizons for fundamental research in a wide array of disciplines that until recently were considered to have nothing in common with one another – linguistics and quantum cryptography and neurosurgery and quantum informatics.

Our students will gain the knowledge and skills needed to conduct this kind of research. In addition, we have intentionally made this an English-taught programme, as this is the language that the natural sciences and engineering sciences ‘speak.’ Our graduates will be able to fully carry on professional conversations and scientific discussions as they present the results of their work to their colleagues all over the world.

How Learning Takes Place

The programme includes core classes and electives covering fields such as micro- and nanoelectronics, quantum mechanics, photonics, metamaterials, superconductivity, information networks and systems, and more. Particular attention will be paid to applied math, which students need in order to use specialised mathematics devices.

Quantum information science is a newer discipline that is growing rapidly. This affects both the number of specialists capable of teaching it, as well as the level of preparation students are able to achieve in undergrad. But we have found a solution to these problems. On the one hand, we have come up with a set of introductory courses that allow students who completed a basic undergraduate programme to effectively prepare for more complex, specialised disciplines. On the other hand, invited lecturers, who are leaders and top researchers in their fields, teach the specialised courses.

A significant portion of the programme consists of practicums connected with the technology used to prepare and microscopically analyse nano-sized systems. These classes will take place in the laboratories of the joint faculties and HSE MIEM’s partner research organisations.

Our ‘ideal applicant’ is someone with a bachelor’s degree in the natural sciences who has taken core courses in physics and higher mathematics. In addition, they should be motivated to learn from not only the thick textbooks that still don’t really exist in our discipline, but also first-hand from world-renowned specialists in the field

Our students will have access to the resources and equipment of the Quantum Optics and Telecommunications Joint Department with Skontel, the All-Russian Research Institute for Optical and Physical Measurements joint department, the Research Institute of Communication and Control Systems (NIISSU), the Rocket and Space Corporation Energia, and the laboratories of the Kapitza Institute for Physical Problems.

What Kind of Students Should Apply

We were happy to see radio and computer hardware engineers and designers; engineers from the radio-electronic systems, information technology, and security systems services; and specialists from laboratories in the fields of nanotechnology, cryptography, metrology and informatics.

But overall, our ‘ideal applicant’ is someone with a bachelor’s degree in the natural sciences who has taken core courses in physics and higher mathematics. In addition, they should be motivated to learn from not only the thick textbooks that still don’t really exist in our discipline, but also first-hand from world-renowned specialists in the field.

We also hope that the programme appeals to international students as well. We are confident in our ability to offer students from all over the world – the CIS, Far East, India, and Southern and Eastern Europe – a top-notch education at a competitive price. After studying here, it is certain that they will be able to find a job at an international company.

What Happens After the Master’s Programme

The trajectory of the Quantum Information Technologies master’s programme will allow graduates to find work at a broad array of research organisations, including the academic institutes of the Russian Academy of Sciences, the international research centres CERN and EASA, and national research organisations such as CNRS (France) or DFG (Germany). And, of course, we would love for our master’s students to stick around the Higher School of Economics for a while longer to go on into a PhD programme.

But our students will also be able to embark on a professional career trajectory as well. Their knowledge and skills will be sought after by research and design organisations in Russia’s defence, aerospace, radio-electronic, and nuclear industries, as well as by large international companies working on information technologies, D-Wave Systems and Google being just two examples.

See also:

Russian Radio Astronomers Discover a Method for Predicting Solar Flares

Researchers from HSE in Nizhny Novgorod and the Pulkovo Astronomical Observatory (CAO RAS) examined data on microwave emissions from several active solar regions. Astronomers discovered that a few hours prior to a flare, there was an increase in oscillations in the region with the highest observed brightness of the microwave emission during the flare. This method can potentially be used to achieve more accurate predictions of severe solar flares. The study has been published in Geomagnetism and Aeronomy.

Scientists Develop Algorithm for Accurate Calculation of Quantum Systems

Researchers from the MIEM HSE Centre for Quantum Metamaterials, jointly with colleagues from Germany and the UK, have proposed an algorithm for the automated compression of arbitrary environments (ACE). It opens up exciting new possibilities for the precise calculation of the dynamics of quantum systems. According to the scientists, the new method can assist in the design of quantum computers and novel communication systems. The study findings are published in Nature Physics.

The Light of Knowledge

On May 20, the ‘Day of Light’ was held for the first time at the HSE University building on Basmannaya Ulitsa. The event was organised and conducted by students of the Faculty of Physics, who told junior students and schoolchildren about the latest scientific achievements.

Russian Physicists Developed the Fastest Algorithm for the Simulation Motion of Microparticles in a Plasma Flow

Physicists from the Joint Institute for High Temperatures of RAS, HSE University, and Moscow Institute of Physics and Technologies have developed the first open-source GPU-based code for the simulation of microparticles motion in a plasma flow.  OpenDust is optimised for graphics accelerators, that allows it to calculate the forces acting on microparticles significantly faster than existing alternatives. A paper with the findings has been published in Computer Physics Communications.

Russian Scientists Discover Method for Enhancing the Capacitance of Supercapacitors

A supercapacitor is a device capable of rapidly storing and releasing a significant amount of energy within a matter of seconds. It consists of metal electrodes immersed in an electrolyte solution. In their model, MIEM HSE scientists substituted the conventional low-molecular-weight electrolyte with a polyelectrolyte, resulting in an unexpected and adverse physical phenomenon: supercapacitors experience a reduction in capacitance when the pore size of the electrode is below 1 nm. By carefully selecting optimal conditions for polyelectrolytes, it becomes possible to develop supercapacitors that are not only more robust but also more efficient in their performance. The study has been published in Physical Review E.

Physicist from HSE University-St Petersburg Ranked Russia’s Number One Scientist in Electronics and Electrical Engineering by Research.com

The academic platform Research.com has published a ranking of the best scientists in the field of electronics and electrical engineering in 2022. In Russia, first place in Electronics and Electrical Engineering went to Alexey Zhukov, Academic Supervisor of the International Laboratory of Quantum Optoelectronics, Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences.

Using Simple Salts to Produce Safer Electrolytes for Aqueous Batteries

A team of Russian scientists including HSE MIEM researchers have used superconcentrated salt solutions to produce effective water-based electrolytes that demonstrate high conductivity and electrochemical stability and require lower amounts of non-toxic salts, making the batteries safer and less expensive than classical non-aqueous ones. The study is published in The Journal of Physical Chemistry C.

Tunnelling Contact Helps to Study Electron Structure of Carbon Nanotubes

Russian physicists have demonstrated how tunnelling contacts can be used for single-particle states spectroscopy in carbon nanotubes. The proposed technology of tunnelling contact fabrication and the spectroscopic method will help measure the exact nanotube bandgap value, which is the key characteristic required for design of any nanotubes-based electronic devices. Applied Physics Letters publishes the result of the study.

Researchers Compare Energy Consumption During Extraction and Synthesis of One Diamond Carat

Researchers from HSE University, RAS, and Skoltech have compared actual specific energy consumption in the production of diamonds using traditional (mining) and innovative (synthesis) methods. Depending on the technology, 36 to 215 kWh of energy is consumed to produce a 1 carat diamond. It turned out that not all diamond synthesis technologies surpass extraction methods in terms of energy efficiency. The results of the study were published in the journal Energies.

Researchers Begin to Understand Correlation of Schumann Resonances and Dust Storms on Mars

The interaction of dust particles in Martian dust storms may cause electric fields that are powerful enough to have charges that induce standing electromagnetic waves known as Sсhumann resonances. This is the conclusion drawn by physicists from HSE University, the Space Research Institute, and MIPT. The paper was published in Icarus journal.