• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Faculty of Physics Opens at HSE

Students at HSE will be able to enroll in undergraduate and Master’s programmes in Physics, starting in 2017. Furthermore, including those working on doctorates, students will also be able to carry out research not only at HSE laboratories, but also several leading institutes of the Russian Academy of Sciences (RAS), which are launching joint departments with our new faculty.

From Economics to Physics

HSE was founded as an institution of higher education specializing in economics, but soon started developing as an institution offering various areas of studies, both in the humanities and technology. The University’s Faculties of Mathematics and Computer Science already have a reputation as some of the best of their kind in Russia. In 2012, HSE acquired MIEM – the ‘engineering branch’ of the University, which offers a Master’s programme in Applied Physics. Also, a Master’s programme in Mathematical Physics is now taught at the HSE Faculty of Mathematics. The launch of the HSE Faculty of Physics is a continuation on this path of development.

‘Physics and mathematics have always been the strongest areas in Russian science. Traditionally, they are the most acknowledged internationally,’ said Yaroslav Kuzminov, HSE Rector, adding: ‘Since the Faculty of Mathematics has been such a major success, we were thrilled to accept the offer by various leading RAS institutes to create the Faculty of Physics at HSE, as well as start up undergraduate programmes and expand the Master’s programmes in Physics. I’m happy that a large team of skilled physicists is eager to work at HSE, and accept and share our aims and values.’ He also notes that the fast development of global science requires new approaches to the training of researchers, which, in turn, may be based on current best practices. This also necessitates a strong environment in related areas and properly corresponding to global trends.

‘HSE has recently been considered as a paragon university. Other institutions borrow our approaches to the organization of education, research, and staff management,’ said Yaroslav Kuzminov. He notes: ‘As we found our Faculty of Physics (as well as looking at the HSE Faculty of Mathematics with its very strong ties to Steklov Mathematical Institute and the RAS Institute of Informatics Problems), we, in turn, can learn from MIPT. We can borrow their practices with respect to scientific platforms, which can offer educational opportunities via direct involvement in research work. In fact, MIPT has been a genetic ancestor of HSE from the very beginning, as MSU has been. The organization of HSE as a research university borrowed a lot from the MIPT model. The only difference is that our Faculties of Economics, Sociology, Law, and so forth didn’t have strong RAS partners. In regards to physics, we have such partners, and can rely on them’.

The New Faculty

The HSE Faculty of Physics’ concept presumes that, as early as the undergraduate level, education is closely connected to research work. The faculty is being developed in collaboration with such leading RAS institutes as the Landau Institute for Theoretical Physics, Kapitza Institute for Physical Problems, Institute of Solid State Physics, Prokhorov General Physics Institute, Institute for Spectroscopy, and the Space Research Institute. Our plan is to open six joint departments with RAS institutes as part of the faculty in 2016-2018. This figure will increase to eight joint departments in 2020.

Undergraduate and Master’s studies at the new faculty will be provided through two platforms. Firstly, students will be able to obtain a comprehensive education (e.g., lectures, seminars, and laboratory work) ‘intramurally at HSE’. Secondly, they will have an opportunity to study in HSE’s experimental laboratories created as part of RAS physics institutes. Furthermore, they will receive a concentrated education (starting from the third year of their study) and have the opportunity to carry out research projects.

According to the creators of the new faculty’s concept, such an approach to organizing studies will, on one hand, ensure access for students to the most advanced equipment and, on the other hand, immerse them in an environment alongside professional physicists capable of establishing, discussing and solving new experimental challenges and objectives.

Undergraduate and Master’s programmes in physics at the new faculty will start enrolling students in 2017. The plan is to enroll 40 undergraduates and 20 Master’s students in HSE-funded places. The Doctoral School of Physics is looking forward to its new recruits (the first doctoral students in Physics and Astronomy were enrolled by HSE this year).

The Faculty’s People

The new faculty’s Dean will be Mikhail Trunin, Doctor of Physics and Mathematics, who headed the MIPT Faculty of General and Applied Physics in 2007- 2015. He has over 30 years’ experience working at the RAS Institute of Solid State Physics. His research interests include the physics of condensed matters, cryogenics, high frequency solid state electrodynamics, and the superconductivity of new materials.

Undergraduate and Master’s courses will be taught by active researchers, including Vladimir Lebedev, RAS Member and Director of the Landau Institute for Theoretical Physics, Igor Kolokolov and Mikhail Feigelman, Deputy Directors at the same institute, Alexey Starobinsky, RAS Member, Mikhail Vysotsky, RAS Member, and Konstantin Postnov, Deputy Director of the Sternberg Astronomical Institute, as well as the following Doctors of Physics and Mathematics: Igor Burmistrov, Vladimir Yudson, Alexey Ioselevich, David Shklyar, etc.

‘We plan to make the faculty part of the global academic community,’ Mikhail Trunin said, adding: ‘During the next three years, we are going to sign several agreements with leading international universities and research centres. This will make it possible for Master’s students take part in internships through these institutions, which is crucial for their development as researchers. We also plan to launch a system of mini-courses, which will be taught by visiting scholars from all over the world.’

Research at the Faculty

‘Physics is, first of all, an experimental science,’ Mikhail Trunin emphasized. ‘Therefore, it is of vital importance to develop HSE’s experimental laboratories at the faculty’s partner organizations, including leading RAS physics institutes. These laboratories’ objectives include in-depth academic research relying extensively on the latest equipment, as well as making sure that students take direct part in research work,’ he said.

There is already one physics laboratory at HSE, the Laboratory for Condensed Matter Physics, which was established in June 2016. It is headed by Yury Makhlin, RAS Member. Its Academic Supervisor is Lev Ioffe, Professor at Rutgers University (USA) and University Paris VI (France). The best Russian scholars from various RAS institutes take part in the laboratory work.

‘Our laboratory will focus on the cutting-edge areas of condensed matter theory, such as the evolution of quantum-coherent states in superconducting systems and how they can be used to create qubits (a qubit is a unit for data storage in quantum computers), researching the interface of quantum information science and condensed matter theory, the physics of semiconducting and superconducting nanostructures and quantum magnetics, as well as the theory of new states of cold atoms,’ Prof. Lev Ioffe explains.

‘I believe we have all the chances of working closely with HSE experts electrophysiology and neuron networks physics, as well as with research centres at HSE’s Faculties of Mathematics and Computer Science,’ he said.

The laboratory will not only conduct research, but also provide instruction. ‘The laboratory’s staff form the initial core of those developing the new faculty’s undergraduate and Master’s curricula’, said Mikhail Feigelman, a member of the laboratory, adding: ‘This team, together with our colleagues from other fields of physics, will create the foundations for the contents and style of this new, strong faculty. Studies here will be challenging, but also thrilling. However, this not only requires the best researchers in physics, but also motivated students. HSE has a reputation as a strong university, which also attracts smart students. So, we have quite good chances of achieving this.’

Starting in the current academic year, students of various HSE programmes are already studying a physics course, ‘The World through a Physicist’s Eyes: from Black Holes to Qubits’, as a minor. These lectures are now being presented by Konstantin Postnov.

 

See also:

Russian Scientists Discover Method for Enhancing the Capacitance of Supercapacitors

A supercapacitor is a device capable of rapidly storing and releasing a significant amount of energy within a matter of seconds. It consists of metal electrodes immersed in an electrolyte solution. In their model, MIEM HSE scientists substituted the conventional low-molecular-weight electrolyte with a polyelectrolyte, resulting in an unexpected and adverse physical phenomenon: supercapacitors experience a reduction in capacitance when the pore size of the electrode is below 1 nm. By carefully selecting optimal conditions for polyelectrolytes, it becomes possible to develop supercapacitors that are not only more robust but also more efficient in their performance. The study has been published in Physical Review E.

Physicist from HSE University-St Petersburg Ranked Russia’s Number One Scientist in Electronics and Electrical Engineering by Research.com

The academic platform Research.com has published a ranking of the best scientists in the field of electronics and electrical engineering in 2022. In Russia, first place in Electronics and Electrical Engineering went to Alexey Zhukov, Academic Supervisor of the International Laboratory of Quantum Optoelectronics, Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences.

Using Simple Salts to Produce Safer Electrolytes for Aqueous Batteries

A team of Russian scientists including HSE MIEM researchers have used superconcentrated salt solutions to produce effective water-based electrolytes that demonstrate high conductivity and electrochemical stability and require lower amounts of non-toxic salts, making the batteries safer and less expensive than classical non-aqueous ones. The study is published in The Journal of Physical Chemistry C.

Tunnelling Contact Helps to Study Electron Structure of Carbon Nanotubes

Russian physicists have demonstrated how tunnelling contacts can be used for single-particle states spectroscopy in carbon nanotubes. The proposed technology of tunnelling contact fabrication and the spectroscopic method will help measure the exact nanotube bandgap value, which is the key characteristic required for design of any nanotubes-based electronic devices. Applied Physics Letters publishes the result of the study.

Researchers Compare Energy Consumption During Extraction and Synthesis of One Diamond Carat

Researchers from HSE University, RAS, and Skoltech have compared actual specific energy consumption in the production of diamonds using traditional (mining) and innovative (synthesis) methods. Depending on the technology, 36 to 215 kWh of energy is consumed to produce a 1 carat diamond. It turned out that not all diamond synthesis technologies surpass extraction methods in terms of energy efficiency. The results of the study were published in the journal Energies.

Researchers Begin to Understand Correlation of Schumann Resonances and Dust Storms on Mars

The interaction of dust particles in Martian dust storms may cause electric fields that are powerful enough to have charges that induce standing electromagnetic waves known as Sсhumann resonances. This is the conclusion drawn by physicists from HSE University, the Space Research Institute, and MIPT. The paper was published in Icarus journal.

Statistical Physics Can Help Uncover the Impact of Media on Decision Making

Students and researchers from HSE University and the Landau Institute for Theoretical Physics have examined the widely known ‘Prisoner’s Dilemma’ game using methods from statistical physics. They used the mean-field concept, a common tool for studying the physics of many-particle systems, to describe human decision-making processes. Researchers suggest that this model may be helpful for understanding systems with many participants. The results of the study are published in the September issue of the Physics Review Research journal.

Scholars Gain New Data on Heavy Exotic Hadrons

As part of the Belle experiment, researchers were able to measure the energy dependence of e+e- -> B-anti-B, B-anti-B* and B*-anti-B* reactions in the 10.63 GeV to 11.02 GeV energy range for the first time. The new data will help clarify the nature of the group of exotic Upsilon mesons that have mass in this range. The results of the study were published in the Journal of High Energy Physics.

Researchers Explain Potential Cause of Earth’s Green Airglow

A team of Russian researchers from HSE University, the Russian Space Research Institute, and the Pushkov Institute of Terrestrial Magnetism (Russian Academy of Sciences) has described the development of modulational instability of electromagnetic waves in dusty ionospheric plasma, which is caused by a high intensity of electromagnetic emissions. The researchers considered inelastic collisions of ionospheric plasma particles and formulated new tasks and applications to be addressed at a later stage. The results are published in the Physics of Plasmas journal.

Russian Researchers Obtain New Data on Solar Magnetic Field Asymmetry

Researchers from the Institute of Earthquake Prediction Theory and Mathematical Geophysics (Russian Academy of Science) and HSE University have proven that asymmetry between meridional flows in the northern and southern hemispheres of the Sun depends on the anomalies of the solar magnetic field. Research undertaken by Elena Blanter and Mikhail Snirman reveals new aspects of the importance of solar magnetic field asymmetry for predicting the anomalies of the Sun’s activity. The article has been published in Solar Physics.