First Cohort Graduates from Master’s Programme in Statistical Learning Theory
The Master's Programme ‘Statistical Learning Theory’ was launched in 2017, and is run jointly with the Skolkovo Institute of Science and Technology (Skoltech). The programme trains future scientists to effectively carry out fundamental research and work on new challenging problems in statistical learning theory, one of the most promising fields of science. This field lies at the intersection of various disciplines of mathematics and computer science: mathematical statistics, machine learning, optimization, information theory, complexity theory, and others. From the early stages of preparing their theses, students collaborate in group research. Graduates of the programme receive a double degree—one from HSE University and one from Skoltech.
In 2019, the first cohort of MS students in 'Statistical Learning Theory' graduated from HSE, and seven of them graduated with distinction. Graduates Yury Kemaev and Maxim Kaledin sat down with HSE News Service to discuss the programme, give some advice to prospective students, and share their plans for the future.
What did you gain during your studies at the programme?
Yury: I applied to the programme after getting my bachelor’s in Computational Mathematics and Cybernetics from Moscow State University, where I studied in the Department of System Programming. While studying in the 'Statistical Learning Theory' programme at HSE, I gained knowledge that enables me to conduct research in the field of artificial intelligence.
Maxim: Before entering the programme, I had a little bit of an idea of what I wanted to do in the future, and here I made my final decision: I will do research in modern stochastics and multidimensional statistics. In many ways, the HSE lecturers, who we soon started working with at the HDI Lab, influenced my choice.
My colleagues always support me, we organize seminars and meetings together – this is how research works. This programme is a great way to become a part of real research
How does it feel to study at two universities at once?
Yury: It turned out to be very convenient, since you could receive support from both universities. Skoltech offered a good scholarship, and HSE University provided me with housing in the dorm. There are other good things. For example, HSE let me take interesting courses on Coursera and reimbursed me for the costs of participating in a conference. In my opinion, everything was organized perfectly, because it was possible to receive course credits from both universities, as well as from the Yandex School of Data Analysis. Other students and I took advantage of this opportunity. If you know that a certain course won’t be of any value to you, you can replace it with a different one. You can also get a group together and propose to replace one course with another, which is what we did with Neuro Bayesian Methods in our group. In my opinion, you should value this opportunity to manage your time and resources, especially during your master’s studies.
Maxim: It’s a challenge in terms of both bureaucracy and content. There were scheduling mix-ups sometimes, we had to do credit transfers and negotiate various formalities. It's nice that the administration always met us halfway and all these issues were resolved as well as possible.
Given that it’s a joint programme, there are twice as many requirements: you are literally a student at two different places
You need to attend the required courses, which are part of the curricula at both universities during the first year, and to pass exams. During the second year, you can choose your own courses, so you can make your schedule more flexible. In general, it’s not as difficult as it may seem. Some of the students even managed to have jobs.
HSE and Skoltech are fundamentally different universities with different views on education and programme curriculum. At HSE we had more mathematics courses related to probability and statistics—of particularly note were ‘Modern Stochastics’ (with Denis Belomestny and Alexey Naumov), and ‘High-Dimensional Statistics’ (with Quentin Paris). At Skoltech we had more applied courses. For example, I especially liked the courses ‘Numerical Linear Algebra’ and ‘Fast and Efficient Solvers’ with Ivan Oseledets. Some of the students preferred more practice-oriented work, while others, like me, became more engaged with theory. Some of us prefer Skoltech, and others prefer HSE. But we all learned a lot about both modern theory and its applications.
Programme graduates and Ivan Arzhantsev, Dean of the Faculty of Computer Science
© HSE University
What advice would you give to prospective students?
Yury: I would advise that they think about what they want to achieve in 2 years of master’s studies and whether they need it. Here is a thought experiment: here I am, a week after graduation. What can I do and what opportunities do I have now? Do I really want this? Why and what for? How will I achieve it during these two years? I didn’t have clear answers to all these questions at the time, but it helps to determine your general way, and this, in turn, allows you to set priorities for yourself.
Maxim: I would advise applicants to be more active, communicate with professors, attend research seminars, and search for conferences and schools on these topics. They should find a research team that shares their interests. As for the laboratories I know, I can say that they can do anything from object recognition and change detection in pictures to stochastics and financial mathematics.
I would say that the main advantage of this programme are the live research seminars. Everything is open; you just need to understand what you are interested in and study it. There will always be people who will be happy to work with you.
Can you tell us a little bit about the research groups?
Yury: I was lucky to be in a group on Bayesian methods led by Dmitry Vetrov. I met very talented and motivated people there and got an idea of how to organize the process of research.
I suppose the largest portion of our programme was made up of group work, and I think that is how it should be
There are other very strong groups both at Skoltech and HSE, their members will probably tell you more.
Maxim: Сourses in this programme are not as important as seminars and research groups. I remember that during the second year of studies I had two subjects in the first semester and one in the second. At the same time, I was spending a full day in the laboratory and was busy solving problems that were then partially included in my thesis. This is your main activity; in fact, it is essentially like an internship. There are several groups, and some of them were transformed into laboratories. A few that I know well are, for example, the HDI Lab where people do statistics, MCMC (Markov Chain Monte Carlo), and optimal transport. There is also the Centre of Deep Learning and Bayesian Methods with Dmitry Vetrov, where several of the students from my group worked.
At Skoltech there is a group led by Ivan Oseledets that works with multidimensional computational mathematics (both theoretical and practical issues) and applications of tensor methods to various engineering problems; they have many joint projects with the industry. At Skoltech there are still a few more groups in the applications of machine learning. Each group organizes research seminars and invites guest speakers to deliver lectures and mini-courses. I think anyone interested in statistics or data science would definitely find a team that shares his/her interests.
What about your future plans?
Yury: In September I joined the team of Google Deep Mind as Research Engineer, where I’ll be working on artificial intelligence technologies.
Maxim: My research supervisors Denis Belomestny and Eric Moulines and I are currently working out all the details for my cotutelle doctoral degree between the HSE Faculty of Computer Science and École Polytechnique. Right now, we are preparing all the necessary documents. In practice, this means that I will spend six months in Paris and six months in Moscow for three years, working on my dissertation and attending doctoral courses.
I will study reinforcement learning theory and statistics on manifolds – there will be enough work for many years. We want to understand how you can evaluate the reliability of RL algorithms and how you can accelerate learning (current algorithms require a lot of data, patience and tricks). In the field of manifolds, we are interested in how one can estimate distributions and sample nontrivial objects lying on manifolds (for example, covariance matrices of special structure that must be evaluated for Frequency Division Duplex in base stations).
My academic supervisors and the laboratory staff members (the HDI Lab at HSE and CMAP at Ecole Polytechnique) are experts in statistics and stochastics, and I am very proud to work with them. It’s hard to make plans for after doctoral school, but I hope that I will continue to work in science and collaborate with my colleagues from the HDI Lab.
How to apply
Applicants who wish to study in the joint programme between HSE and Skoltech must apply to both universities separately. If they so choose, applicants may apply to HSE only and sit in on classes free of charge at Skoltech (as non-degree seeking students), which allows students to study all courses offered by the SLT track.
Admissions to HSE’s programmes are now open. International students can apply online. To learn more about HSE University, its admission process, or life in Moscow, please visit International Admissions website, or contact the Education & Training Advisory Centre at: inter@hse.ru, or via WhatsApp at: +7 (916) 311 8521.
Denis Belomestny
Leading Research Fellow at the International Laboratory of Stochastic Algorithms and High-Dimensional Inference
Dmitry Vetrov
Head of the Centre of Deep Learning and Bayesian Methods
Maxim Kaledin
Research Assistant at the International Laboratory of Stochastic Algorithms and High-Dimensional Inference
Eric Moulines
Academic Supervisor of the International Laboratory of Stochastic Algorithms and High-Dimensional Inference
Alexey Naumov
Head of the International Laboratory of Stochastic Algorithms and High-Dimensional Inference
Quentin Paris
Senior Research Fellow at the International Laboratory of Stochastic Algorithms and High-Dimensional Inference
See also:
Machine Learning Algorithm to Reduce Tester Workload
Researchers from HSE University and the Russian Technological University (RTU MIREA) have developed an intelligent system to automate software testing on a variety of platforms. Its computer vision feature is capable of recognising elements in a graphical user interface even after a redesign. The details are published in the Journal of the Siberian Federal University.
HSE University Hosts Third Summer School on Machine Learning in Bioinformatics
Between August 23rd and 25th, the HSE Faculty of Computer Science held its annual summer school on machine learning in bioinformatics. After two years of being held online, the school returned to an offline format for this year. Over three days, more than 120 participants attended lectures and seminars by leading experts in the field from institutions such as HSE University, Skoltech, AIRI, MSU, MIPT, Genotek, and Sber Artificial Intelligence Laboratory.
Machine Learning Helps Improve Perovskite Solar Cells
A team of researchers from HSE MIEM, LPI RAS, and the University of Southern California have applied machine learning to the analysis of internal defects in perovskite solar cells and proposed ways to improve their energy efficiency. The findings of the study performed on the Cs2AgBiBr6 double perovskite can be used to develop more efficient and durable perovskite-based materials. The paper has been published in the Journal of Physical Chemistry Letters.
HSE Faculty of Computer Science and Skoltech Hold Math of Machine Learning Olympiad 2022
HSE's Faculty of Computer Science and the Skolkovo Institute of Science and Technology have held the Mathematics of Machine Learning Olympiad for the fifth time. The participants competed for prizes and the opportunity to matriculate at two universities without exams by enrolling in the HSE and Skoltech joint master's programme in Math of Machine Learning.
Helping the Homeless with AI Technology
A research team from the HSE University Artificial Intelligence Centre led by Ivan Yamshchikov has developed a model to predict the success of efforts to rehabilitate homeless people. The model can predict the effectiveness of the work of organisations for the homeless with about 80% accuracy. The project was presented at a conference dedicated to the activities of social centres.
Machine Learning has Helped Forecast Global Hotspots of Unrest and Revolution
HSE scientists Andrey Korotayev and Ilya Medvedev used machine learning (ML) to build an index of instability in the world. The new method made it possible to use a large number of variables and distribute them in non-standard fashion.
‘Recognition of Our Work Motivates Us to Continue Our Research’
A report by students of MIEM has won a prestigious prize at the 44th International Conference on Telecommunications and Signal Processing organized by Brno University of Technology in the Czech Republic. The project by the HSE students was named the best student work by the organizing committee.
Summer School on Machine Learning in Bioinformatics Held at HSE University
The second international Summer School on Machine Learning in Bioinformatics took place on August 23–27. This year’s school featured 533 participants from 53 countries.
International Data Analysis Olympiad IDAO-2021 Has Started
The registration period for the International Data Analysis Olympiad (IDAO-2021) is open until March 12. The qualifying round has already begun and will run until March 31. This year, the HSE Faculty of Computer Science and Yandex are holding the Olympiad for the fourth time. This year's Platinum Partner is Otkritie Bank. The Olympiad is organised by leading data analysts for their future colleagues—early career analysts and scientists.
‘Borders Between Countries Are Becoming Blurred Thanks to Online Communication’
Professor Oleg Melnikov is among the international professors invited to work remotely with HSE University’s students this academic year. He lives in California, runs the Data Science department at a company in Palo Alto, and teaches at Stanford and other universities in the United States. At HSE University he teaches a course on machine learning for the students of the Faculty of Computer Science and the International College of Economics and Finance (ICEF), as well as a university-wide optional course, ‘Machine Learning in Python’. He spoke about his work in an interview with the HSE News Service.