• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

«В будущем ожидаю все большего развития профессий, связанных с prompt engineering»

«В будущем ожидаю все большего развития профессий, связанных с prompt engineering»

© Высшая школа экономики

Англоязычная программа онлайн-кампуса НИУ ВШЭ «Магистр по компьютерному зрению» в 2024 году сменит название на «Искусственный интеллект и компьютерное зрение». Как новое имя отразится на семантике магистратуры, почему ИИ стал главным федеральным трендом в сфере информационных технологий, с какими задачами будут работать выпускники программы, рассказал ее академический руководитель, профессор кафедры информационных систем и технологий НИУ ВШЭ в Нижнем Новгороде Андрей Савченко. 

Андрей Савченко

— Почему в новом названии программы сделан упор на искусственный интеллект? Расширяете ли вы таким образом диапазон дисциплин? 

— Ранее в процессе обсуждения актуальности программы я неоднократно обращал внимание на то, что методы компьютерного зрения в настоящий момент применяются не только для анализа изображений и видео, но и для многих других задач искусственного интеллекта. Но даже я был приятно удивлен тем, что более половины первых выпускников программы в качестве тем дипломных работ выбрали задачи ИИ. Формально они не входят в область компьютерного зрения, но используют модели, впервые появившиеся в обработке изображений. Например, наши выпускники классифицировали и генерировали ЭКГ-сигналы и даже применяли обучение с подкреплением для трейдинга с описанием текущей ситуации на фондовом рынке при помощи изображений. Причем по последней теме наш магистрант вместе со своим научным руководителем даже подготовил научную статью, которую недавно представил на международной конференции в Хорватии. 

С учетом указанной тенденции мы решили поменять название и немного расширить базовую подготовку в области ИИ, включающую в себя программирование на С++ и Python, машинное и глубокое обучение. В результате программа станет доступнее для более широкого круга лиц, заинтересованных в ИИ. Конечно же, расширится и диапазон тем курсовых и дипломных работ: планируем для этого привлекать новых научных руководителей — специалистов в разнообразных задачах ИИ, необязательно связанных с анализом изображений. Тем не менее компьютерное зрение продолжит оставаться основной частью программы, именно в этой области выпускники получат наиболее глубокие знания, которые далее уже смогут применять в работе над приложениями ИИ.

— Индустрия искусственного интеллекта развивалась в основном благодаря усилиям академического сообщества. Почему сегодня власти стали уделять ей первостепенное внимание и возлагать на ИИ ответственность за процветание цифровой экономики? 

— Искусственный интеллект развивался в течение долгого времени усилиями исследователей и ученых в университетах. В течение 70 лет разрабатывались новые методы, нейросетевые модели и алгоритмы обучения. Периодически появлялись результаты, которые приводили к всплескам интереса к ИИ со стороны бизнеса и государства, но потом, когда ожидаемого качества решения задач получать не удавалось, интерес охлаждался: наступали так называемые «зимы ИИ». Все изменилось чуть больше 10 лет назад, когда в рамках конкурса по распознаванию изображений группа исследователей из Торонто обучила глубокую сверточную нейронную сеть и на 10% улучшила результаты других участников конкурса, в том числе крупных компаний. Последние оказались достаточно гибкими, быстро поняли перспективность новых технологий, создали у себя собственные исследовательские подразделения и получили те результаты, которые мы можем сейчас наблюдать. 

Государства обычно не так оперативно адаптируются, если говорить о поддержке, создании новых программ развития и финансирования, внедрении новых технологий. Тем более многие опытные эксперты в начале текущего бума предупреждали о том, что ожидания могут снова не оправдаться, что, конечно, не могло не затормаживать принятие крупных государственных решений.

В России федеральный проект о развитии ИИ был подписан в конце 2019 года, с конца 2021 года были созданы первые шесть центров ИИ (в том числе один у нас в Вышке). Только в ноябре этого года был представлен рейтинг вузов, готовящих специалистов в области ИИ, там в самом топе, конечно, Вышка тоже представлена 

Что касается особой ответственности за процветание цифровой экономики, то тут все просто: технологии ИИ уже сейчас достигли такого уровня, что, даже если не будет разработано никаких новых методов, в текущем виде они могут использоваться в разнообразных задачах. Например, автоматизировать контроль дефектов по данным видеонаблюдения, анализировать дорожные ситуации, структурировать и суммаризовать документы. Конечно, для того, чтобы все это обучалось и функционировало, нужны большие вычислительные мощности, серверы с графическими ускорителями, но это технические детали, а риски от перехода к более широкому применению ИИ весьма малы. Конечно, задачей-максимум для исследователей остается создание новых методов и технологий, которые смогут еще больше повысить качество решения или даже начать совсем новые задачи, для которых текущих возможностей ИИ недостаточно.

— Эволюция сфер ИИ и компьютерного зрения происходит весьма стремительно. Какие образовательные инструменты помогают программе отвечать постоянно меняющимся трендам? 

— Конечно, это большая проблема для образования, которое может не поспевать за теми задачами, которые нужно решать сейчас. В ходе всех дисциплин программы стараемся приглашать специалистов из индустрии для проведения живых вебинаров по самым важным темам. Например, в прошлом году в рамках курса по генеративным моделям мы пригласили специалиста из Сбера, одного из авторов только что вышедшей модели генерации изображений Kandinsky. Но самое важное — мы считаем, что нужно готовить специалистов, которые не просто умеют работать с технологиями, актуальными на момент учебы в магистратуре, но и могут адаптироваться к новым трендам, у нас они учатся учиться.

Программа “Master of Computer Vision” разработана учеными Высшей школы экономики и ведущими экспертами Huawei, SBER Lab, Intel, AIRI, Xperience.ai, участвующими в передовых исследованиях в области компьютерного зрения. Выпускники программы претендуют на позиции computer vision software engineer, perception engineer, 3D perception / computer vision algorithm engineer, computer vision testing engineer, computer vision scientist, data scientist, machine learning engineer. Цель магистратуры — подготовить специалистов, которые смогут работать в любых проектах, связанных с распознаванием объектов, разработкой систем видеонаблюдения, созданием 3D-реконструкций и фотофильтров, мобильных приложений для распознавания предметов на фото и видео, внедрением CV на всех типах производства в промышленности, ритейле, медицине, банкинге и пр.

В рамках работы над курсовыми и дипломами мы стараемся прививать студентам традиционный научный подход: при появлении новой задачи прежде всего найти известные решения, провести актуальный обзор современных научных статей, определить их достоинства и недостатки, выбрать наиболее подходящий вариант, реализовать его и провести экспериментальные исследования на известных бенчмарках. Мы считаем, что если студент такой подход освоит, то в будущем ему будет намного проще справляться с изменением трендов, возникновением новых технологий и т.п. Кроме того, отмечу, что темы курсовых и выпускных квалификационных работ на нашей программе ежегодно формулируют специалисты с большим опытом в научных исследованиях и/или решении прикладных задач, поэтому темы всегда даются самые актуальные. У наших научных руководителей всегда есть желание, чтобы из диплома выросла научная статья (у первых выпускников в итоге вышло две публикации), поэтому стараемся особое внимание обращать на новизну реализуемых решений. 

— Как вы оцениваете емкость отечественного рынка труда в сфере ИИ? Какие профессии самые востребованные? Какие специальности скоро появятся? 

— На отечественном рынке наблюдается дефицит любых специалистов в области ИИ, работающих с задачами обработки сигналов, анализа изображений, видео, текстовых документов, обучения нейросетевых моделей. При этом работодатель хочет видеть готовых специалистов, способных решать задачи от их начальной постановки до внедрения. Все чаще обращают внимание на наличие у соискателей научных публикаций в области ИИ или опыта участия в конкурсах (например, на платформах Kaggle), чтобы подтвердить квалификацию. В будущем ожидаю все большего развития профессий, связанных с prompt engineering. Их представители умеют грамотно использовать большие языковые модели или нейросети для генерации изображений и видео. Кроме того, уже сейчас вижу появление спроса на специалистов из конкретных предметных областей (медицина, промышленность, радиоэлектроника и т.п.), которые смогут применять ИИ, машинное обучение с пониманием того, что важно в конкретном направлении. На нашей программе мы ждем в том числе специалистов в определенных областях в рамках базового образования, которые хотели бы научиться применять ИИ в своей профессиональной деятельности.

— Как специалист, не связанный с ИТ, может реализоваться в рамках индустрии ИИ? Например, «Яндекс» открывал вакансию AI-тренера для редакторов и копирайтеров. 

— Действительно, большие модели надо обучать на высококачественных данных, для их подготовки нужны специалисты из разнообразных предметных областей. В упомянутом выше prompt engineering для написания текста, музыки, картинок используется ИИ. Результат работы большой языковой модели типа ChatGPT/GigaChat или генеративной картиночной модели типа Midjourney, Stable Diffusion или Kandinsky существенно зависит от подаваемого на вход текстового запроса (prompt), и подобрать правильный prompt — целое искусство. Технологии ИИ достигли такого уровня, что практически любой специалист в конкретном домене может использовать их для решения своих задач. Если он, конечно, открыт к освоению нового и не боится связанных с этим трудностей.

Текст: Екатерина Зиньковская, Дирекция по онлайн-обучению

Вам также может быть интересно:

«Нам нужно учиться общаться с сервисами искусственного интеллекта»

На платформе «Открытое образование» стартовал онлайн-курс «Что такое генеративный ИИ?», который поможет слушателям узнать больше о том, как правильно общаться с нейросетями, чтобы они лучше выполняли задачи. Как работает генеративный ИИ и как с его помощью создавать любой контент, рассказала эксперт Центра непрерывного образования, старший преподаватель департамента больших данных и информационного поиска ФКН Дарья Касьяненко.

«Специалист по Data Science» ВШЭ — первая программа переподготовки с аккредитацией Альянса в сфере ИИ

Согласно итогам экспертизы, программа Высшей школы экономики охватывает современные области анализа данных и машинного обучения и помогает нетехническим специалистам приобрести базовые знания в области больших данных и искусственного интеллекта. Это уже шестая образовательная программа факультета компьютерных наук НИУ ВШЭ, получившая престижную профессионально-общественную аккредитацию.

В Вышке стартует конкурс компетенций в области ИИ и машинного обучения

Дирекция программы развития НИУ ВШЭ объявляет о проведении конкурса компетенций в интересах развития исследований в области искусственного интеллекта и машинного обучения. Заявки принимаются до 2 мая 2024 года.

Что мы знаем о мозге и его возможностях: рассказывают исследователи ВШЭ

Правда ли, что мозг — самый неизученный орган? Как нейротехнологии помогают в лечении сложных заболеваний? Может ли искусственный интеллект соревноваться с естественным? И куда пойти учиться, чтобы стать нейроученым? Эти и другие темы в новом выпуске рубрики «Разговор с экспертом» обсудили ученые из Высшей школы экономики — Ольга Драгой, Андрей Мячиков и Алексей Осадчий.

НИУ ВШЭ планирует до конца года обучить преподавателей работе с ИИ

Высшая школа экономики представила новый комплексный проект по повышению квалификации профессорско-преподавательского состава НИУ ВШЭ в области использования искусственного интеллекта. Входящий в него пакет программ направлен на обеспечение высокого уровня компетенций в области использования ИИ в образовании и исследованиях. Курсы бесплатны и предназначены для штатных преподавателей, а в дальнейшем — научных сотрудников и аспирантов московского кампуса НИУ ВШЭ.

«Нейросети показывают, какие качества действительно делают людей уникальными»

Онлайн-кампус НИУ ВШЭ запустил курс «Прикладные нейросети» на портале «Открытое образование». Теперь разобраться в том, как применять возможности искусственного интеллекта на практике, может любой желающий.

В Вышке наградят студентов, которые напишут диплом с помощью ИИ

Высшая школа экономики запустила конкурс решений, применяющих технологии искусственного интеллекта, при подготовке дипломов. Задача конкурса — оценить использование студентами инструментов на основе генеративных моделей в выпускных квалификационных работах (ВКР), защищаемых в 2024 году.

Определены победители финала НТО по профилю «Искусственный интеллект»

Названы победители и призеры Национальной технологической олимпиады (НТО) по профилю «Искусственный интеллект», который уже второй год оказывается самым популярным по количеству регистраций из 41 направления НТО. В этом сезоне участниками соревнований стали более 6300 человек из 84 регионов России, а также Казахстана, Молдовы и Узбекистана. В финал вышли 104 школьника из 28 регионов России. Среди субъектов РФ по числу финалистов лидируют Москва (26 человек), Санкт-Петербург (16 человек) и Новосибирская область (13 человек).

Производство будущего: Центр ИИ ВШЭ представил разработки в области контроля ручных операций

Исследователи Центра ИИ НИУ ВШЭ выстроили систему автоматизированного контроля ручных операций, которая находит применение в промышленном производстве. Система облегчает процессы наблюдения за объектами и действиями, а также позволяет контролировать качество их исполнения.

ФКН ВШЭ и Яндекс расширят сотрудничество в сфере подготовки специалистов по ИИ

В следующие 10 лет партнерство Яндекса и факультета компьютерных наук НИУ ВШЭ расширится по трем направлениям: создание новых образовательных программ, развитие исследований в области ИИ и применение генеративных нейросетей в учебном процессе. ФКН был основан Вышкой и Яндексом 10 лет назад и стал одним из лидеров в подготовке разработчиков и специалистов по ИИ и машинному обучению. За это время выпускниками факультета стали 3385 человек.