• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

«Если ученый хочет найти что-то прорывное в физике, предсказания только мешают»

Игорь Кукушкин, главный научный сотрудник Института физики твердого тела РАН, академик, профессор факультета физики НИУ ВШЭ
© Михаил Дмитриев

Главный научный сотрудник Института физики твердого тела РАН, академик, профессор факультета физики НИУ ВШЭ Игорь Кукушкин вместе с коллегами создал два наукоемких коммерческих предприятия. Их продукция используется в фармацевтике и медицине, для контроля качества различных материалов и даже при борьбе с терроризмом. О том, как совмещать науку и бизнес, Игорь Кукушкин рассказал новостной службе ВШЭ.

От Черноголовки до Штутгарта

Я родился и вырос в Черноголовке, учиться пошел в Московский физико-технический институт с базой в Институте физических проблем им. Капицы. Мне очень нравился этот институт, но потом я все же перевелся на базу в Институт физики твердого тела (ИФТТ) в Черноголовку.

Институт физики твердого тела был организован в 1963 году, постановление о его создании подписал президент АН СССР Мстислав Келдыш. В основной состав теоретической команды входили И.М. Халатников, Л.П. Горьков, А.А. Абрикосов, И.Е. Дзялошинский. Сейчас в институте работает более двухсот научных сотрудников, на его базе расположены пять производственных отделов и 22 лаборатории.

В ИФТТ я начал заниматься изучением необычных свойств экситонных систем в условиях деформации кристаллов германия (Ge). Мы изучали полупроводники при низких температурах и впервые обнаружили, что при определенных условиях деформации в кристаллах германия появляется связанное состояние экситонных молекул. У нас впервые появилась возможность изучить это состояние и его свойства.

Также меня в тот период интересовали исследования экситонных систем в сильных магнитных полях, и мы обнаружили проявление квантово-статистических свойств экситонного газа. Эти исследования легли в основу моей кандидатской диссертации, которую я защитил в 1983 году. А потом по приглашению нобелевского лауреата Клауса фон Клитцинга, директора Института исследований твердого тела Общества Макса Планка, я отправился к нему в лабораторию в Штутгарт.

Вперед в будущее

Лаборатория в Германии меня тогда поразила невероятно, она выгодно отличалась оснащением, там все было по последнему слову техники того времени. Но если говорить о знаниях, о профессиональном обучении, то я бы сказал, что у нас было сильно круче, чем у них. Притом что институт Макса Планка, по крайней мере тогда, — это вершина физических знаний в Германии. Для меня стала неожиданностью разница в культуре проведения семинаров. У нас был другой уровень общения, более открытый, мы никогда ничего не скрывали, обменивались идеями и обогащались за счет этого.

С другой стороны, в лаборатории в Штутгарте было все необходимое оборудование для проведения самых сложных экспериментов. Советские физики о таком могли только мечтать — необходимых приборов приходилось ждать по два года, а когда они приходили, их качество оставляло желать лучшего. У немцев тогда уже появились компьютеры, которых у нас еще не было. Ощущение было, как будто я перепрыгнул через десятилетие, я даже растерялся.

До 1960–70 годов физическая наука исследовала элементы из таблицы Менделеева — соединения, которые можно найти в природе. Но потом стало понятно, что самое интересное — это объекты, которые человек может создать сам

Благодаря новым технологическим возможностям работа закипела быстро и в моей научной карьере случился невероятный прорыв. Если до этого времени я исследовал только классические полупроводники (германий и кремний), то в Штутгарте появилась возможность исследовать новые полупроводниковые структуры — гетеропереходы и квантовые ямы, которые можно было выращивать методом молекулярно-пучковой эпитаксии. Такая технология была тогда уже хорошо развита в Германии, но совершенно отсутствовала в СССР. Накопленный методический опыт и огромное желание использовать оптические методы для исследования свойств низкоразмерных электронных систем с сильным взаимодействием вылились в развитие нового магнитооптического метода и в создание нового типа гетероструктур. Все это позволило получить нам прорывные результаты в исследованиях по дробному квантовому эффекту Холла и по вигнеровской кристаллизации в системе двумерных электронов.

Кухонная квантовая механика

До 1960–70 годов физическая наука исследовала элементы из таблицы Менделеева — соединения, которые можно найти в природе. Но потом стало понятно, что самое интересное — это объекты, которые человек может создать сам. В технологической лаборатории института в Штутгарте можно было вырастить любые структуры, которые были нам нужны для исследований: металл, диэлектрик, любой полупроводник. Мы могли придумать и реализовать структуру с уникальной комбинацией свойств, которых в природе не было. Мы это называли «кухонная квантовая механика»: мы сами изготавливали объекты любой ширины — 10, 100, 400 ангстрем. Оказалось, что это неограниченная область деятельности в плане фундаментальных исследований и практики. Так оно и произошло: в физике сразу были открыты несколько новых явлений, например, дробный квантовый эффект Холла, к которому я тоже приложил руку.

Дробный квантовый эффект Холла — одно из проявлений квантового эффекта Холла, когда при дробных числах заполнения уровней Ландау в двумерном электронном газе на графической зависимости холловского сопротивления от величины магнитной индукции наблюдаются участки с неизменным поперечным сопротивлением — «плато». За фундаментальный вклад в исследование дробного квантового эффекта Холла и работы по физике твердого тела в 2001 году Игорю Кукушкину была присуждена международная премия Немецкого физического общества — премия им. Макса Планка, а также премия им. Гумбольдта.

В результате работы в Штутгарте у меня появилась своя лаборатория с новейшим на то время оборудованием — рай для исследователя. Можно было спокойно работать, строить карьеру, реализовываться как ученый, у меня даже были мысли остаться в Германии. Между двумя странами наша семья жила около 15 лет, но с каждым годом ездить было все сложнее. Надо было уже где-то осесть. Мы с женой решили вернуться в Россию, тем более в начале 2000-х наука начала лучше финансироваться и активнее развиваться и возможностей для исследования в Институте физики твердого тела в Черноголовке становилось все больше. Все эти 15 лет у меня была исследовательская группа в ИФТТ, состоящая из моих студентов, аспирантов и молодых научных сотрудников, а в Штутгарт я ездил в длительные (на 2-3 месяца) командировки пару раз в год. Большая часть моей группы тоже ездила на измерения в Штутгарт — так, чтобы полностью использовать экспериментальные возможности немецкой лаборатории. К началу 2000-х годов размер группы достигал уже 20 человек и стало понятно, что надо определяться и обеспечивать финансирование растущей группы из российских источников.

Наука и бизнес

Наши исследования привлекли внимание инвесторов из компании «Тройка-Диалог». Они как раз искали возможность вложиться в наукоемкий бизнес. Мы в тот момент занимались различными микроволновыми исследованиями, изучали новый физический принцип преобразования электромагнитного излучения в электричество и создание на этом принципе многопиксельной матрицы детекторов терагерцового излучения. Тогда это была совершенно неразвитая область, она называется радиовидение — получение с помощью радиоволн изображения различных предметов и объектов, невидимых (например, спрятанных под одеждой) глазом.

Идея заключалась в том, чтобы на основе наших исследований разработать прибор, который фиксировал бы то, что не видно обычным взглядом и не улавливается, например, металлоискателем. Мы с коллегами предложили сделать такой прибор, который работает на частотах в 1000 раз меньше, чем обычный фотоаппарат, и может распознать разные виды взрывчатых веществ, например, пластит. При этом мы могли сделать его достаточно удобным и компактным. Инвесторам идея понравилась, они сами взялись за разработку бизнес-плана. Когда нам выделили деньги, инвесторы лично приезжали и контролировали, как идет процесс — нам, ученым, так было проще, потому что не надо было писать отчетной документации. Ведь для нас это была возможность зарабатывать деньги самим и не зависеть от грантов.

Идея заключалась в том, чтобы на основе наших исследований разработать прибор, который фиксировал бы то, что не видно обычным взглядом и не улавливается, например, металлоискателем

Одна из первых задач, которую нам пришлось решать, — это чтобы устройство работало при комнатной температуре. На реализацию этой идеи потребовалось три года, но в итоге мы сделали прибор «Терасенс», который состоял из большой многопиксельной матрицы детекторов терагерцового излучения, а также из генератора и оптических элементов. Фактически у нас получился прибор, который, как оказалось впоследствии, применим в самых разных областях. Например, в производстве керамической плитки, где из-за неоднородности материала возникают дефекты, и плитка получается плохого качества. Наш прибор можно поставить прямо на конвейер, который сыпет глину, и он будет контролировать однородность глины. Таким же образом можно контролировать однородность веществ в лекарственных препаратах. Кроме того, на основе этой разработки удалось сделать сканер безопасности, который позволяет быстро получать изображения движущихся людей и находить спрятанные под одеждой оружие и взрывчатку.

С некоторой задержкой мы создали еще одну компанию, и разработали еще одно устройство — «Инспектр», работа которого основывается на рамановском рассеянии. Это довольно компактный прибор (характерный вес 1 кг), который позволяет по спектру рассеяния света определять какое именно вещество исследуется. Этим нашим прибором заинтересовались фармацевтические компании, так как фактически мы получили определитель сложных веществ, который позволяет расшифровать весь его состав. Это делается с помощью спектроскопии — лазер в видимом диапазоне посылается на вещество, от которого идет рассеянное излучение с набором спектральных характеристик, именно они и указывают на определенное вещество. То есть мы можем этим прибором выявить, перед нами, например, аспирин или другое лекарство. У нас есть база данных веществ, которые мы собирали сами и частично покупали.

Рамановская спектроскопия, или спектроскопия комбинационного рассеяния, позволяет идентифицировать жидкие и твердые вещества, поскольку спектры несут информацию о колебаниях молекул в определенном окружении. Регистрация спектров обычно требует стационарных лабораторных установок, значительного времени на юстировку оптической системы и приготовление проб. Сравнение полученного спектра со спектрами известных веществ не менее трудоемкая задача. Эти разработки могут быть использованы в фармацевтической, химической, пищевой, парфюмерной, ювелирной, нефтегазовой и в других отраслях промышленности.

В зависимости от требований заказчика результат распознавания может выводиться в максимально простом виде (опасно — безопасно, вода — горючая жидкость) или подвергаться визуальному сравнению с эталоном для получения.

Разработанные приборы уже более пяти лет продаются по всему миру. Число исполненных заказов и контрактов составляет сотни штук в год и оборот каждой компании превышает миллион долларов в год. Наши приборы продаются в Германию, Францию, Японию, США, Китай, многие другие страны. Имеется значительный спрос и в России, например, в прошлом году только в Таможенную службу РФ для проверки ввозимых и вывозимых веществ было поставлено около сотни приборов «Инспектр».

Исследования — это всегда поиск неизведанного

С тех пор как я начал заниматься бизнесом, жизнь, конечно, изменилась. Когда я занимался квантовым эффектом Холла и мои друзья меня спрашивали, над чем я работаю, то, что бы я ни говорил, понятным это не становилось. Предпринимательство — это другое, оно близко к жизни каждого, многих интересует, люди думают, что понимают, что это такое. Я как ученый готов часть времени заниматься прикладными вещами, тем более что это позволяет зарабатывать деньги. Но, конечно, это не сравнится с исследованиями. Исследования — это всегда поиск неизведанного, то, чем я не могу не заниматься, как не могу жить без воздуха. В фундаментальной физике вредно ставить конкретные задачи, искать то, что кто-то предсказал, потому что сейчас все теоретические предсказания — это неполная информация, и она всегда тормозит. И если мы хотим найти что-то действительно прорывное, то предсказание нам мешает. Выигрывает тот, кто не знал, куда идти, потому что туда никто не ходил. И по крайней мере половину всего времени я отвожу на занятие наукой.

Мы привлекаем молодых талантливых ребят с последних курсов бакалавриата, из магистратуры и аспирантуры, учим их воплощать свои исследовательские идеи на практике

И к исследованиям лаборатории ИФТТ, и к нашим прикладным проектам мы привлекаем молодых талантливых ребят с последних курсов бакалавриата, из магистратуры и аспирантуры, учим их воплощать свои исследовательские идеи на практике. Например, они могут изучать принципы регистрации спектров разного типа в современной спектроскопии, а на базе нашей компьютерной программы, предназначенной для прибора, создавать свои базы данных веществ, разрабатывать методики анализа конкретных смесей, приспосабливать приборы для решения конкретных научных и учебных задач. Мне кажется, это очень перспективное направление.

Начиная с четвертого курса студенты физфака Вышки будут участвовать в лабораторных исследованиях, смогут быть авторами и соавторами научных статей в хороших рецензируемых журналах. Главное для меня, чтобы студент был талантлив и искренне заинтересован в продолжении научной карьеры. Оценки в дипломе не так важны, как умение самостоятельно принимать решения, критически и нетривиально мыслить. Именно таких студентов ждут в лабораториях ИФТТ.

Вам также может быть интересно:

Утверждено Положение о специальных стипендиях студентам факультета физики

Студенты, поступившие на бюджетную форму бакалавриата с наиболее высокими баллами, будут получать стипендии в размере 10 тысяч и 5 тысяч рублей, все студенты бюджетной формы магистратуры — 20 тысяч рублей.

Факультет физики запускает открытый лекторий

5 мая научные сотрудники факультета физики и факультета компьютерных наук прочитают лекции, посвященные Большому адронному коллайдеру, а также обнаружению гравитационных волн.

Первокурсники факультета физики посетили базовые кафедры в Черноголовке

Можно ли совмещать науку и технологии? Как выглядят современные исследовательские лаборатории? Что изучают физики-теоретики? В этих вопросах разбирались бакалавры первого курса факультета физики НИУ ВШЭ. Студенты  побывали в Институте физики твердого тела РАН и в Институте теоретической физики им. Ландау, где расположены две базовые кафедры факультета — физики конденсированных сред и теоретической физики соответственно.

Первокурсники физфака Вышки: надо активно рассказывать о факультете, чтобы к нам поступало больше хороших людей

7 апреля на факультете физики НИУ ВШЭ пройдет День открытых дверей. Преподаватели расскажут о вступительных испытаниях и учебе на самом молодом факультете Вышки (первый набор прошел только в 2017 году). А пока первокурсники бакалавриата, призеры заключительного этапа Всероссийской олимпиады школьников по физике прошлого года Арслан Галиуллин и Алексей Лужнов рассказали новостной службе, почему они пошли на совершенно новый факультет и что сейчас о нем думают.

Команда факультета физики стала призером на Всероссийской олимпиаде по теоретической механике

Первокурсники факультета физики НИУ ВШЭ заняли 3-е место на Всероссийской олимпиаде по теоретической механике, которая проходила 20-24 ноября в Казани. Напомним, что в этом году на факультете физики ВШЭ прошел только первый набор в бакалавриат, соответственно, команда ВШЭ была на соревнованиях самой младшей.

Задания по физике будут сложнее, но времени на их выполнение дадут больше

Такое решение принято методической комиссией олимпиады «Высшая проба» по профилю «Физика», в которую вошли сотрудники недавно созданного факультета физики ВШЭ. По уровню сложности олимпиадные задания будут соответствовать заданиям регионального этапа Всероссийской олимпиады школьников по этому предмету. Продолжительность заочного этапа будет увеличена. За проверку работ участников также отвечает факультет физики ВШЭ.

Профессор МИЭМ НИУ ВШЭ избран заслуженным членом Американского физического общества

Лев Щур был отмечен за новаторское применение компьютерного моделирования и разработку наилучших генераторов случайных чисел для их использования в статистической физике. Профессор Щур стал единственным ученым, работающим в России, избранным в 2017 году заслуженным членом АРС.

Тест: что вы знаете о первом искусственном спутнике Земли?

4 октября исполнилось 60 лет со дня запуска первого искусственного спутника Земли.

Факультет физики принял первых студентов

В этом году на факультете физики ВШЭ прошел первый набор: с сентября там будут учиться 26 бакалавров и 14 магистров. Накануне им вручили студенческие билеты, пообещали творческую атмосферу и пристальное внимание.

Подать заявления на магистерскую программу «Физика» можно до 16 августа

Продление сроков приема связано с тем, что многие абитуриенты, которым потенциально интересна эта программа, получили свои бакалаврские дипломы только в середине июля, и университет хочет дать им возможность подать документы в магистратуру без спешки.