• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Structural Analysis and Visualization of Networks

2025/2026
Учебный год
ENG
Обучение ведется на английском языке
3
Кредиты
Статус:
Курс по выбору
Когда читается:
1-й курс, 3 модуль

Преподаватель

Course Syllabus

Abstract

The course «Structural Analysis and Visualization of Networks» is dedicated to studying networks. Some examples of the networks are social networks, the Internet, molecules, transportation maps, parse trees. The course will cover models of network formation, statistical and structural analysis of networks and machine learning tasks on networks. Practical tasks include analysis and visualization of networks using Python.
Learning Objectives

Learning Objectives

  • To provide students with theoretical and practical knowledge of network science
Expected Learning Outcomes

Expected Learning Outcomes

  • Knows terminology and basic notion of network science
  • Understand principles of network structure
  • Can analyze real world network data using Python
  • Can visualize network data using Python
Course Contents

Course Contents

  • Introduction
  • Power law
  • Random graphs
  • Centralities
  • Node similarities, Assortativity
  • ML on graphs
  • Graph embeddings
  • Graph neural networks
  • Knowledge graphs
Assessment Elements

Assessment Elements

  • non-blocking Домашняя работа
    Average grade for several home assignments. Assignments contain coding tasks in Python.
  • non-blocking Проект
    Analyze a real-life network, solve ML task. Prepare presentation about it and defend in class.
Interim Assessment

Interim Assessment

  • 2025/2026 3rd module
    0.4 * Домашняя работа + 0.6 * Проект
Bibliography

Bibliography

Recommended Core Bibliography

  • Network science, Barabasi, A.-L., 2019

Recommended Additional Bibliography

  • Newman, M. (2010). Networks: An Introduction. Oxford University Press, 2010
  • Wasserman, S., & Faust, K. (1994). Social Network Analysis : Methods and Applications. Cambridge: Cambridge eText. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=490515

Authors

  • Emasheva Valeriia Anatolevna